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INTRODUCTION

Problem Statement and Purpose

Variability in mortality rates across US 
 counties and states has been noted in the 
 literature (Clifford and Brannon, 1985; 

LeClere et al., 1997; Geronimus et al., 1999; 
McLaughlin et al., 2001; McLaughlin and Stokes, 
2002; Morton, 2004; Diez Roux et al., 2007). Most 
often, studies examining county mortality rates 
either are largely descriptive or offer some evi-
dence for correlations among certain ecological 
factors within counties and the county’s subse-
quent mortality rate. More recent research has 
used basic exploratory spatial data analysis tools 
to map this variability and document the exis-
tence of spatial clusters in mortality rates. Spatial 
clusters for counties with both high and low mor-
tality rates have been noted at a single point in 
time (Morton, 2004; McLaughlin et al., 2007) and 
over several time periods (Cossman et al., 2003).

Spatial clusters among ecological factors 
measured at the county level are also observed 
when conducting exploratory spatial data analy-
sis. Spatial clusters can be found among counties 
with a high percentage of minority populations, 
high county poverty rates, and county levels of 
income inequality. However, current literature 
addressing the spatial distribution of aggregate 
mortality risks has not fully explained the mecha-
nisms infl uencing this spatial pattern, based on 
the potential spatial distribution of other factors 
associated with higher or lower county morta-
lity rates. This could partly be the result of 
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ABSTRACT

County mortality rates in the US tend to be 
associated with social and economic resources 
of counties and the unequal distribution of 
these resources across space. The processes 
that generate these social and economic 
inequalities are often tied to geographical 
location. In this paper, we present an 
application of spatially autoregressive models 
of US county mortality rates that control for 
the social and economic conditions that often 
infl uence mortality rates and the effects of 
spatial structure of counties in the US. We 
suggest that arguments are missing from the 
social science and demographic literatures to 
offer possible explanations for the spatial 
patterning of county mortality rates and 
ecological correlates of these rates at the 
county level. We fi nd that, after controlling for 
spatial structure in the data, several key social 
variables become insignifi cant in the analysis. 
We suggest that spatial statistical models are 
valuable tools in the social and behavioural 
sciences but that the use of these methods 
needs to be well grounded in considerations 
about the spatial process inherent to the 
outcome studied, and the applications of these 
methods should not be used solely for post 
hoc statistical correction. Copyright © 2009 
John Wiley & Sons, Ltd.
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methodological and conceptual questions about 
the appropriate level for assessing aggregate 
mortality risks (Diez Roux, 2001), as well as how 
other ecological factors may lead to different 
aggregate mortality risks for certain members of 
the population, such as racial/ethnic minorities 
or persons living in poverty. It is also necessary 
to consider how health-promoting or health-
harming resources are spatially located and how 
the uneven spatial distribution of these resources 
and population characteristics may impact 
mortality chances. However, empirical research 
exploring this uneven distribution of resources 
across space must consider the appropriate 
mechanisms that link these aggregate associa-
tions to the spatial process leading to the pattern 
being studied and observed.

The purpose of this paper was to address the 
use of appropriate spatial statistical modelling 
techniques to assess the role of space in infl uenc-
ing outcomes that have an inherent spatial dimen-
sion, in this case, US county mortality rates. 
Further, we argue that the missing component to 
the appropriate application of these methods to 
the study of aggregate health outcomes is poor 
or limited conceptual development on the exis- 
tence of spatial heterogeneity in these outcomes. 
Therefore, we offer a more detailed argument 
based on spatial relationships in the econometric 
literature that differentiates between possible 
explanations for spatial heterogeneity in mor-
tality rates. Specifi cally, this paper examines 
the relationships between race/ethnicity and 
resources, broadly defi ned, based on a spatial 
inequality framework. However, this paper 
moves beyond basic arguments made at the 
aggregate level that relate county resources and 
population composition to mortality rates to offer 
a conceptual and empirical model that specifi es 
the nature of the spatial process at work. We fi rst 
use a standard ordinary least squares (OLS) 
model to estimate the effects of county-level 
characteristics on mortality rates. We describe 
how this approach fails to incorporate possibly 
important explanatory factors into the model and 
explains little of the variation in county mortality 
rates. In particular, the OLS model fails to account 
for spatial structure and clustering in our data.

To extend the analysis, we use both weighted 
least squares and spatial linear regression models 
to examine the relationship between standardised 
mortality rates and county-level contextual 

variables using spatial error and spatial lag 
models, based on our understanding of the nature 
of the spatial process for this outcome. We are 
interested in how the infl uence of spatial proxim-
ity and connectivity affects the regression model 
estimates after the addition of spatially autore-
gressive parameters that model the effects of the 
spatial structure of the data. Our goal for this 
paper was to understand how the incorporation 
of spatial parameters in our statistical models, 
based on a more focused understanding of the 
spatial process at work, can better account for 
the effects of ecological factors on mortality rates 
in the US.

Background Information and Theoretical 
Development of Spatial Processes

Research in the public health literature has had 
an emerging focus on examining the impact of 
the environment, both physical and social, on a 
variety of health outcomes (Macintyre et al., 1993; 
Jones and Duncan, 1995; Kaplan, 1996; Robert, 
1999). Numerous studies have examined the 
impact of structural, contextual, or ecological 
factors on individual health outcomes using mul-
tilevel modelling techniques (Jones and Duncan, 
1995; O’Campo et al., 1997; Patel et al., 2003; 
Stuber et al.,. 2003; Chaix et al., 2005). These 
studies have found that variables measured at a 
higher level of aggregation may have indepen-
dent or interactive effects on individual health 
outcomes (Soobader et al., 2006). Still, this statisti-
cal method has not allowed for the explicit spatial 
distribution of the aggregate level areas, or their 
populations and resources, to be examined as 
they relate to mortality risks for the US popula-
tion as a whole. A recent study by McLaughlin 
et al. (2007) fi nds that the spatial patterning of 
county mortality rates is associated with eco-
nomic characteristics, racial minority concentra-
tion, social conditions and safety, health-care 
services distribution, and environmental risks in 
counties. The inclusion of a spatial lag parameter 
in the spatial linear regression model indicates 
that several of the relationships between county 
mortality rates and the above-mentioned county-
level factors become stronger in these models. 
This result suggests that more traditional linear 
regression models misspecify the possible rela-
tionships between county ecological factors and 
mortality rates if the inherent spatial dimension 
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of these relationships is not considered. Further, 
the particular spatial model specifi ed in their 
research assumes that a spillover type process is 
operating. However, this may not be the most 
appropriate conceptual model to use in studying 
aggregate mortality rates.

Often, the literature on spatial regression 
models fails in justifying why either a spatial lag 
or a spatial error model is most appropriate for 
examining specifi c outcomes. Additionally, in the 
social sciences, spatial regression models are 
often selected only to meet the analytical needs 
of data collected over space. A fi rst step in deter-
mining the spatial analysis technique most appro-
priate for examining specifi c health outcomes 
must be considering conceptual matters with 
regard to the specifi c outcomes and then specify-
ing the spatial process inherent to the research 
problem (Anselin, 2002; Morenoff, 2003). Anselin 
(1988) uses the term spatial dependence as a general 
term to refer to either a spatial lag model or a 
spatial error model. Spatial heterogeneity is another 
way to consider a spatial effect, and Baller et al. 
(2001: 566) defi ne spatial heterogeneity as ‘a situ-
ation in which coeffi cients or error patterns vary 
systematically across geographic areas’. Based 
on this defi nition, it would not be clear if the 
observed spatial pattern in county mortality rates 
is a result of errors associated with unmeasured 
variables at the county level or possible impacts 
of neighbouring mortality rates on a county’s 
specifi c mortality rate. Therefore, spatial diag-
nostic tests can help to determine if a spatial error 
or spatial lag model would best approximate the 
spatial process underlying the observed pattern 
in county mortality rates with controls for spatial 
heterogeneity. Still, these diagnostic tests, which 
are based on the ordinary or Robust Lagrange 
multiplier statistic, do not offer a conceptual 
connection to the appropriate selection of either 
of these two spatial models.

Conceptually, the spatial lag and spatial error 
models imply very different spatial processes. A 
spatial lag model most closely represents a dif-
fusive process in the outcome, implying that the 
value of a health outcome in one location is infl u-
enced by that in a neighbouring location for that 
particular health outcome. This means that the 
dependent variable being examined is lagged 
across all the neighbours for an area, while the 
spatial impact of unmeasured independent vari-
ables in the model is also considered. This type 

of spatial process for studying health outcomes 
is probably best suited to the study of infectious 
diseases and possibly social network processes as 
they spread among people in different spatial 
locations. This particular type of spatial model 
has been used to examine birth weight in Chicago 
neighbourhoods (Baller et al., 2001), hospitalisa-
tion rates for low-back problems in North 
Carolina counties (Joines et al., 2003), and US 
county morality rates (McLaughlin et al., 2007). 
However, we argue that the spatial process inher-
ent to each of these health outcomes does not 
operate by a diffusive process. Joines et al. do the 
most to offer potential explanations of the diffu-
sive mechanisms underlying their selection of a 
spatial lag model to examine hospitalisation rates 
of low-back problems. They fi rst argue that 
patients in counties who are happy with their 
health-care service experience may talk to patients 
with similar low-back pain in neighbouring 
counties, and this stream of communication 
would lead to spatial clustering in their outcome. 
Second, they argue that standards for appropri-
ate medical care among medical specialists may 
spread by referrals or interaction between doctors 
to lead to spatial patterns in hospitalisation rates 
for low-back problems. Still, this communication 
stream that is used to explain the existence of the 
spatial process in hospitalisation rates between 
neighbouring counties in treating low-back prob-
lems does not seem to best approximate the 
spatial process underlying this health outcome. 
It would seem that what is more likely to explain 
this particular spatial pattern at such a high level 
of aggregation and those in the other studies 
mentioned above are the result of unobserved 
independent variables being omitted from the 
model. A diffusive process, as captured by a 
spatial lag model, would probably best be opera-
tionalised at a very local level.

The spatial error model would use this logic 
to say that the spatial pattern observed is a result 
of unmeasured independent variables. For the 
particular research problem addressed here, the 
spatial error model would argue that the cluster-
ing of county mortality rates not accounted for 
by the independent variables included in the 
model is the result of correlated error terms 
among the independent variables and omitted 
independent variables from the model (Anselin, 
1988; Baller et al., 2001). More specifi cally, this 
spatial model would indicate that the spatial 
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process at work is not diffusive, meaning, that 
the mortality rate in one county does not increase 
the likelihood that a neighbouring county will 
have a similar mortality rate. Instead, the spatial 
process leading to spatial clusters in county mor-
tality rates is a result of the spatial process inher-
ent to the independent variables that are both 
measured and omitted from the empirical model 
specifi cation (Morenoff, 2003). This type of argu-
ment makes it necessary to understand the spatial 
nature of ecological characteristics associated 
with county mortality rates and to better specify 
how these processes are likely to vary over 
space.

Recent research exploring obesity rates in ZIP 
codes areas of King County, Washington 
(Drewnowski et al., 2007), and pneumonia and 
infl uenza hospitalisations in Ontario, Canada 
(Crighton et al., 2007), used a spatial error model 
to test the spatial dependence in these two out-
comes. Both papers note that the spatial error 
model offers the best solution to accounting for 
spatial dependence, but neither paper offers more 
detailed explanations for selecting this model. 
The paper by Crighton et al. does discuss the use 
of the Lagrange multiplier statistic as a diagnos-
tic tool in selecting the spatial error model over 
the spatial lag model and potential issues with 
the scale at which the spatial process is exam-
ined. Still, more work is needed to specify the 
spatial pattern of ecological characteristics 
associated with health outcomes at an aggregate 
level to guide the development of spatially 
based empirical models.

When studying a process such as human mor-
tality, we are interested in documenting if auto-
correlation exists in both the causal factors that 
directly infl uence mortality rates and the under-
lying causes of unequal distributions of resources 
that are known to lead to difference in health and 
well-being. The study of human mortality rates 
within a regression framework assumes that we 
have measured independent variables that infl u-
ence the observed rates. Much of the previous 
work on these ideas has focused on the inequality 
that exists between segments of the US popula-
tion, based on race/ethnicity, income, educa-
tional levels, and household composition (Shin, 
1975; Christenson and Johnson, 1995; McLeod 
et al., 2004; Pampel and Rogers, 2004; LaVeist, 
2005a;Vinnakota and Lam, 2006). How these 
inequalities can contribute to the observed 

patterns of life expectancy and mortality has 
become a valuable line of enquiry in demographic 
studies of health (Waitzman and Smith, 1998; 
McLaughlin and Stokes, 2002; Vinnakota and 
Lam, 2006). When the factors that infl uence 
inequality are examined, recent work has sug-
gested that place-based and spatially based 
studies of inequality can help us understand the 
process that leads to mortality differentials and, 
more generally, health inequalities from a broad 
income-inequality perspective (LaVeist, 2005b; 
Gibbons et al., 2007; Irwin, 2007; Lobao et al., 
2007). Yet more work is needed to justify the 
appropriate use of spatial statistical tools in the 
study of place-based health outcomes and of how 
specifi c aggregate independent variables may 
partly lead to the spatial patterns observed for 
certain aggregate health outcomes.

This paper has three goals: (i) to document the 
spatial autocorrelation that exists in US county 
mortality rates, (ii) to estimate spatial autoregres-
sive models for US county mortality rates based 
on an understanding of the spatial process in the 
outcome, and (iii) to estimate the effects of several 
social and economic inequality indicators on US 
county mortality rates after controlling for this 
spatial structure. Based on our understanding of 
the spatial process inherent to the study of county 
mortality rates, we hypothesise that a spatial 
error model will best approximate the spatial 
process in our outcome. Further, while we use 
diagnostic statistics as one means to make a deci-
sion between selecting a spatial lag or spatial 
error model, we argue that conceptual decisions 
should guide the selection of appropriate spatial 
statistical models prior to estimating these diag-
nostic statistics. This step is necessary because 
diagnostic statistics are often very similar in 
value, and it becomes diffi cult to select an 
appropriate spatial model based on this criterion 
alone. In the next section, we detail the data and 
methods that allow us to test the appropriateness 
of using a spatial error model to examine US 
county mortality rates.

DATA AND METHODS

Data for this analysis are taken from two sources: 
Compressed Mortality Files from Centers for 
Disease Control and Prevention (CDC) Wonder 
at the National Center for Health Statistics and 
the 2005 release of the Area Resource Files. Five-



An Application of Spatially Autoregressive Models 469

Copyright © 2009 John Wiley & Sons, Ltd. Popul. Space Place 16, 465–481 (2010)
 DOI: 10.1002/psp 

year age-sex-race standardised rates for the years 
1998–2002 serve as the dependent variable in this 
analysis. Standardisation of mortality rates is 
used in order to facilitate the comparison of rates 
across groups. It is important in this analysis to 
standardise mortality rates based on age, sex, 
and race because mortality risks vary greatly 
based on these demographic characteristics. For 
this analysis, we use the age-sex-race distribution 
of the 2000 US population as our standard popu-
lation. Specifi cally, the direct standardisation 
equation used to calculate the individual county-
level mortality rates is

DS
m x P x

P x

ASR

ASR

i

k

i

k=
( ) ( )

( )

=

=

∑

∑

2000

1

2000

1

,  (1)

where mASR(x) is each age – sex – race death rate 
in each county from 1998 to 2002 and P2000(x) is 
the age–sex–race distribution of the 2000 US pop-
ulation. In essence, direct standardisation utilises 
the same set of weights to the age-sex-race–
 specifi c mortality rates of each of the US counties, 
and the resulting standardised mortality rate is 
independent of variation in the age–sex–race 
distribution of each county’s population.

Independent variables for this analysis are 
taken from the Area Resource Files and serve as 
county-level social and economic inequality indi-
cators. We include nine independent variables in 
our analyses: percentage of the county popula-
tion that is rural; percentage of the county popu-
lation that is black; percentage of the county 
population that is Hispanic; the percentage of the 
county population that lives below the federally 
designated poverty threshold; the percentage of 
households in the county with a female head; the 
county unemployment rate; the median house-
hold income in the county; the county’s median 
house value; and the population density per 
square mile in the county. The percentage of the 
county population that is rural, defi ned as a pop-
ulation not classifi ed as urban by the Census 
Bureau, is constructed by dividing the county’s 
rural population by the total county population 
and multiplying this value by 100. Similarly the 
percentages of the county population that is black 
or Hispanic are constructed by taking the total 
number of black or Hispanic residents per county, 
dividing those numbers by the total county 

population in 2000, and multiplying the value by 
100. The number of households with a female 
head is divided by the total number of house-
holds to obtain the percentage of households in 
the county with a female head. The unemploy-
ment rate is calculated by dividing the number 
of unemployed persons in the county by the 
civilian labour force in that county. Median 
home values are calculated by the Census 
Bureau using information contained in the 
2000 Census Summary File 1. Population density 
per square mile was calculated by dividing 
the total population of the county by the area of 
the county in square miles. Finally, the Gini 
coeffi cient for household income in the county 
is included as a measure of relative income 
inequality within the county, with a value of 1 
indicating perfect inequality and 0 indicating 
perfect equality in incomes. To overcome differ-
ences in variable scaling, we calculate z-scores for 
all variables in the analysis and use these in our 
regression models.

Measures of Spatial Autocorrelation

The fi rst step in the analysis is an exploratory 
one, intended to discern if there is clustering in 
the data. We use the global Moran’s I statistic to 
examine the variables in our data set for global 
autocorrelation. The interpretation of the Moran’s 
I statistic proceeds much like the interpretation 
of a standard correlation. If the observed value of 
I is greater than its expected value, E[I], then an 
observation tends to be surrounded by neigh-
bours with similar values, while if I < E[I], the 
observation tends to be surrounded by dissimilar 
values (Schabenberger and Gotway, 2005). Testing 
of the Moran statistic is carried out via randomi-
sation methodology (Schabenberger and Gotway, 
2005) and assumes a Gaussian distribution for 
the randomised observations of I. While the 
global estimate of the Moran statistic provides a 
single summary spatial correlation measure, the 
assumption of constant variance and homogene-
ity of the mean of the spatial process generating 
the data is often a weak one. We also consider the 
local version of the Moran statistic, referred to 
as a local indicator of spatial autocorrelation, 
or Local Indicator of Spatial Autocorrelation 
(LISA) (Anselin, 1995). Anselin’s LISA statistic 
is calculated for each county in the data, taking 
into account the variation that exists in the 
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surrounding observations (the local spatial neigh-
bourhood defi ned by the spatial weights matrix, 
W). This local indicator is calculated as

I y
n

n
y w yi i y ij j y

j

n

( ) =
−( )

−( ) −( )
=
∑1 2

1σ
μ μ ,  (2)

where my is the mean of the variable, s2 is the 
sample variance, and the local values at all loca-
tions i sum to the global Moran statistic. Once 
again, the interpretation of the LISA statistic is 
similar to the global Moran: if I(yi) > E[I(yi)], then 
there is local positive autocorrelation at location 
i and a large (or small) value at that location 
tends to be surrounded by large (or small) neigh-
bouring values. Likewise, if I < E[I(yi)], there is 
local negative autocorrelation and a large (or 
small) value at location i tends to be surrounded 
by small (or large) neighbouring values 
(Schabenberger and Gotway, 2005). As with the 
global Moran statistic, signifi cance is judged by 
randomisation of the observed clusters. For 
example, if a county has a high mortality rate and 
neighbouring counties also have high mortality 
rates, there will be high local autocorrelation at 
that location. We present fi gures showing the dis-
tribution of counties classifi ed as having signifi -
cant high–high and low–low clusters. The cluster 
maps are useful for visualising the local cluster-
ing of mortality rates and geographical clusters 
of our other variables.

Spatially Autoregressive Models

When non-spatial data are analysed, the standard 
linear (OLS) model of analysis is the general 
choice for regression and prediction. Several of 
the basic assumptions of the OLS model are that 
the model residuals are normally distributed and 
that they have common unit variance. Spatial 
data, however, present a series of problems to the 
standard OLS regression model. These problems 
are typically seen as various representations 
of spatial structure within the data. By structure, 
we are referring to the ideas of autocorrelation 
and non-stationarity of the distributional param-
eters (mostly mean and variance) or hetero-
skedasticity (unequal variance) of the model 
residuals. Autocorrelation can be defi ned, in a 
general sense, as the co-occurrence of similar 
values at closely spaced spatial locations. This 
can be observed as neighbouring observations, 

both with high (or low) values (positive autocor-
relation). We can also observe situations where 
areas with high values can be surrounded by 
areas with low values (negative autocorrelation). 
Because the standard OLS model assumes that 
the residuals are uncorrelated, as previously 
stated, the autocorrelation inherent to most spatial 
data introduces factors that violate the iid distri-
butional assumptions and the assumption of 
common variance for the OLS residuals.

To account for the expected spatial association 
between our dependent variable (mortality rates) 
and our independent variables, we estimate a 
series of models that account for local structure in 
both the dependent variable (spatial lag model) 
and the autocorrelation in the model residuals 
(spatial error model). We run standard Lagrange 
multiplier diagnostic tests in order to show support 
for our hypothesis that a spatial error model best 
describes the spatial dependence present in our 
outcome. We begin by specifying the baseline OLS 
model, assuming a Gaussian distribution for our 
z-scored mortality rates specifi ed as

Y X e
e

= +
( )

β ,
~ ,0 Σ

 (3)

where Y is the vector of mortality rates, X is the 
matrix of independent variables, b is the vector 
of regression parameters to be estimated from the 
data, and e are the model residuals, which are 
assumed to be distributed as a Gaussian random 
variable, with mean 0 and constant variance-
covariance matrix S. We specify the OLS model 
as

Mortz = a + b1%Ruralz + b2%Blackz + b3%Hispanicz 
+ b4%FemHHz + b5%Unemployz + b6Med-
HomeValuez + b7PopDensityz + b8Giniz + e

where %Ruralz, %Blackz, %Hispanicz, %Povertyz, 
%FemHHz, %Unemployz, MedHomeValuez, 
PopDensityz, and Giniz are the z-scored variables 
described above, with α being the model inter-
cept, and ε the model error term. Before the anal-
ysis, we examined the distribution of the mortality 
rates and found that it was not signifi cantly 
skewed, so the normality assumptions of the OLS 
model are met. Also, we consider a Gaussian dis-
tribution for our data because they are repre-
sented as standardised rates instead of counts 
of events, which would necessitate a Poisson 
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distribution to model such counts of events. We 
present the geographical distribution of our 
dependent variable and plots of its density and 
comparison to a Gaussian distribution in Figure 
1. While an initial Shapiro–Wilk (Royston, 1995) 
test of normality shows a signifi cant deviation 
from a Gaussian distribution (W = 0.987, P = 
<0.0001), we perform some further testing of our 
dependent variable. Because the sample size for 
our analysis is rather large (n = 3071), we have a 
high degree of statistical power to detect any 
deviation of our data from normality, but, on the 
other hand, the Shapiro–Wilk test may be overly 
sensitive in this case to our large sample size and 
reject the null hypothesis when, in fact, our data 
are fairly consistent with the Gaussian distribu-
tion. To explore this, we conduct a bootstrapping 
analysis of the Shapiro–Wilk test. We generate 
9999 samples with replacement, each of size n = 
1000 and compute the Shapiro–Wilk test for each 
sample to generate a distribution of the W statis-
tic. When we compare our observed value of W 

with the bootstrapped distribution, we found 
that 43.9% of the bootstrapped values were 
greater than or equal to our observed value, 
giving a bootstrapped p-value of 0.453. Based on 
this, we conclude that, while our entire sample 
may deviate signifi cantly from normality using 
traditional testing, further examination reveals 
that the deviation lies purely in the extreme tails 
of the distribution, and there is no marked skew-
ness or kurtosis to the rates. Furthermore, because 
in a regression framework, our inference is really 
on the mean of our dependent variable, we 
believe we can make strong inference about (at 
least) the 95% confi dence interval around the 
mean, if not the entire distribution. Following the 
basic fi tting of the OLS, we estimate the value of 
Moran’s I for the fi tted model residuals. This test 
is equivalent to testing the assumption of the 
OLS model that the residuals from the model fi t 
are iid (Cliff and Ord, 1981).

One major limitation to our dependent vari-
able is the degree to which counties with small 

Figure 1. Geographical distribution and comparison to Gaussian distribution of US age, sex, 
and race standardised mortality rate, 1998–2002.
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populations have unstable (meaning from year to 
year) rates because of their small population 
sizes. To accommodate the possible effect of this, 
we also fi t a weighted least squares model to 
assess the effect of county population size to our 
dependent variable. We include a weighting 
variable that is the inverse of the average of 
the county’s population size from 1998 to 2002. 
This effectively gives less weight to counties 
with large population sizes (Neter et al., 1985; 
McLaughlin and Stokes, 2002; Waller and 
Gotway, 2004; McLaughlin et al., 2007).

After examining the results of the OLS model, 
we estimate the spatial autoregressive models; 
fi rst the autoregressive error then the autoregres-
sive lag model. For the spatial autoregressive 
error model to be specifi ed, the model residuals 
from the OLS model are regressed onto a set of 
spatial dependence parameters:

Y X e
e B e v

= +
= +( )

β ,  (4)

where B is a matrix of spatial dependence param-
eters and v is an uncorrelated and homoskedastic 
error term. B is defi ned as

B W= ρ ,  (5)

where r is the spatial autoregressive parameter 
and W is the row-standardised spatial connectiv-
ity matrix defi ned as

W = =
∑

w
w

c
ij

ij

i

,  (6)

where ci is the total number of neighbours a 
county has and wij = 1 if two counties share a 
border or an apex, and 0 otherwise (the Queen 
form of spatial contiguity). Counties are said to 
be Queen contiguous if they share a line segment 
or a single point of their border (Anselin, 2002). 
The process of row-standardising the spatial 
weights equally distributes the weight of neigh-
bouring values of counties that have few versus 
many neighbours, effectively averaging the 
values of the neighbouring counties in this case 
(Tiefelsdorf and Griffi th, 1999; Anselin, 2002).

The spatial error model is then specifi ed:

Y X e
e We v

= +
= +

β
ρ

 (7)

with the full specifi cation being

Y X I W v= + −( )−β ρ 1 ,  (8)

where I is an identity matrix and v is an indepen-
dent error term. This model is often referred to 
as the one-parameter autoregressive error model 
because we only end up estimating the global 
autoregressive parameter r by maximum likeli-
hood (Ord, 1975; Cliff and Ord, 1981; Anselin and 
Bera, 1998; Schabenberger and Gotway, 2005). 
This model, in effect, controls for the 
nuisance of correlated errors in the data that 
are attributable to an inherently spatial pro-
cess or to spatial autocorrelation in the measure-
ment errors of the measured and possibly 
unmeasured variables in the model (Anselin 
and Bera, 1998).

The spatial lag model uses a slightly different 
logic than the error model, where we model the 
autoregression of the mortality rates themselves, 
much like in a time-series approach (Anselin and 
Bera, 1998). The model is specifi ed as

Y WY X e= + +ρ β ,  (9)

where r and W are specifi ed as in the spatial error 
model. In the lag model, we are specifying the 
spatial component on the dependent variables 
rather than the error structure. This leads to a 
spatial lagging of the mortality rates, where they 
are averaged over the surrounding neighbour-
hood defi ned in W.

Finally, following the procedure outlined in 
Waller and Gotway (2004), we estimate a weighted 
spatially autoregressive model that uses the 
inverse of the county’s population size (see 
above) as the weighting variable. As with the 
weighted OLS model, this is primarily carried 
out to account for population size heterogeneity 
between the US counties.

We estimate the spatial autocorrelation statis-
tics and the autoregressive models given in equa-
tions (8) and (9) using the spdep (Bivand et al., 
2008) library in R 2.8.1 (R Development Core 
Team, 2009). For further discussion of the asymp-
totic properties and maximum likelihood estima-
tors for both models, we encourage the readers 
to examine the following sources: Anselin (1988), 
Anselin and Bera (1998), and Ord (1975). We also 
present general and Robust Lagrange multiplier 
statistics (Anselin et al., 1996; Baller et al., 2001) to 
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test for the presence of residual autocorrelation 
in the OLS model to test our proposition that the 
spatial error model is the more appropriate model 
in this circumstance.

RESULTS

We fi rst present the results of the global spatial 
autocorrelation analysis for each variable in our 
analysis. Table 1 gives the observed and expected 
values of Moran’s I for each of the 10 variables in 
the analysis. We see varying levels of global auto-
correlation, with the percentages of the popula-
tion that are black and Hispanic showing the 
highest degrees of spatial correlation, followed 
by the socio-economic indicators, while the per-
centage of the county population that is rural 
showing the lowest degree of spatial autocorrela-
tion among the independent variables in our 
analysis.

The results of the analysis of local autocorrela-
tion analysis are presented in Figure 2. Because 
the local Moran’s I statistics refer to a specifi c 
geographical location (neighbourhood of coun-
ties), it is often useful to graphically depict the 
type of local autocorrelation detected as a cluster 
map showing counties that have high values of 
each variable surrounded by neighbours that 
likewise have high average values for the same 
variable (high–high clusters). In positive autocor-
relation, you can also have a county with a low 
value surrounded by neighbours with a low 
average value (low–low clusters). Additionally, 
there can be spatial ‘outliers’, such as 

counties that have a high value for a variable but 
are surrounded by low average values for that 
variable, a so-called high–low outlier. Similarly, 
if a county’s value is low, but the area surround-
ing it has a high average value, the county will 
be classifi ed as a low–high outlier. Outliers are 
examples of locations showing negative spatial 
autocorrelation. We plot the cluster assignments 
for each of the US counties using all variables in 
this analysis in Figure 2, showing whether they 
are part of a high–high cluster, low–low cluster, 
an unclustered neighbourhood, or a high–low 
outlier, or low–high outlier. While we use the 
term outlier for our discussion, these observations 
may not be true statistical outliers, meaning 
infl uential observations, but instead show a 
pattern contra to the dominant pattern of positive 
spatial autocorrelation.

Mortality rates exhibit high–high clusters 
throughout the Southern Plains, Southeastern, 
and Appalachian regions of the US, and low–low 
clusters are observed in the western mountain 
regions of the country and in some areas of the 
southwest and Midwest. The high–high clusters 
indicate that counties in these clusters are 
observed to have high mortality rates and share 
boundaries with counties that have high mortal-
ity rates. The low–low cluster pattern indicates 
that counties that have low mortality rates tend 
to share borders with counties that also have low 
mortality rates. We suspect that high levels of 
economic inequality, high poverty, and poor eco-
nomic development generally characterise the 
areas with high–high clusters.

Counties with a high percentage of the popula-
tion that is rural have several areas of high–high 
clustering: Appalachia, the northern plains and 
some parts of the Deep South, while low–low 
clusters occur mostly in the highly populated, 
large metropolitan coastal areas of the east, and 
West coasts, south Florida, the Great Lakes region, 
and several areas of the southwest. The high-high 
clusters represent areas that are purely rural in 
character and generally show a high degree of 
isolation from urban centres, while the low-low 
clusters are generally places with high popula-
tion densities and a more urban environment.

The percentage of the county population that 
is black exhibits high–high clusters in the Deep 
South, corresponding to the so-called ‘black belt 
crescent’ region, and low–low clusters are found 
in the northeast, northern plains, and western 

Table 1. Global Moran’s I values for variables in the 
analysis.

Variable
Observed 

I E[I] Z[I]

Mortality rate 0.508 −0.0003 47.39
% Rural population 0.304 −0.0003 28.37
% Black population 0.797 −0.0003 74.27
% Hispanic population 0.825 −0.0003 77.05
% Female HH heads 0.589 −0.0003 54.96
Unemployment rate 0.467 −0.0003 43.6
Median house value 0.584 −0.0003 55.09
Population density 0.598 −0.0003 67.18
Gini coeffi cient (income) 0.394 −0.0003 36.81

HH = high–high cluster; Z[I] = the observed I value’s 
standard deviate under the H0 of no association; E[I] = the 
expected value of Moran’s I.
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(a) (b)

(c)

(e)

(d)

Figure 2. Local autocorrelation cluster map for (a) US county mortality rates and percentage of the county 
population that is rural; (b) percentages of US county populations that are black and Hispanic; (c) percentages of 
US county households that are female headed and county unemployment rates; (d) median housing value and 

county population density; and (e) Gini coeffi cient for income for US counties.
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mountain regions. The percentage of the county 
population that is Hispanic exhibits high–high 
clusters along the US–Mexico border, south 
Florida, and some parts of the southwestern US, 
and low–low clusters are found in the northeast, 
southeast, and northern plains. The spatial pat-
terns observed for both blacks and Hispanics are 
consistent with settlement patterns in the US, 
based on racial residential segregation, although 
recent work has determined that foreign-born 
Hispanic migration streams are shifting to other 
areas of the rural South specifi cally (Lichter and 
Johnson, 2006).

Female-headed households exhibit high–high 
clusters in the southeast, south Texas, and some 
parts of the southwest, areas that also exhibit 
high clustering of minorities, while low–low 
clusters are generally observed in the central and 
northern plains. County unemployment rates 
show many areas of high–high clustering in the 
northwest, southwest, Deep South, and northern 
Appalachia. Low–low unemployment clusters 
exist in the central plains, some areas of 
the Midwest, central Texas, and areas in the 
Northeast around large cities.

Housing values show high–high clusters on 
the east and west coasts, central western moun-
tains, southern Florida, and some areas of the 
Midwest around large cities. Low–low housing 
value clusters are found throughout the north-
ern, central, and southern plains. Population 
density shows high–high clustering around large 
cities throughout the country but particularly on 
the east and western coasts, the Midwest, and 
some areas of the south. Low–low clusters are 
found throughout the western mountains, north-
ern plains, small areas of Appalachia, and the 
southwest. Finally, the Gini coeffi cient of income 
inequality shows high–high clustering through-
out the southeast and Appalachia, the Rio Grande 
Valley, and some areas of the far west. Low–low 
clusters exist around the Mid-Atlantic, the Great 
Lakes, and Northern Plains region and areas of 
the Rocky Mountains. Most of the high–high 
clusters of income inequality correspond with 
high–high clusters of the percentage of the county 
population that is black or Hispanic. This may 
indicate that economic and social resources are 
shared less equally in areas with high concentra-
tions of minority populations, which should 
predict higher mortality rates for these areas as 
well.

Based on these results, we proceed with 
the estimation of the OLS and weighted OLS, 
spatial lag, spatial error, and weighted spatial 
regression models using the empirical specifi ca-
tion described earlier. Table 2 presents the 
results of all OLS and weighted OLS regression 
models. Because all variables in the model are 
standardised to mean zero and unit variance, the 
estimated model coeffi cients are standardised 
coeffi cients and can be interpreted readily. We 
should note that we calculated variance infl ation 
factors for all of our independent variables in our 
OLS model to examine possible mulitcollinearity 
in our predictors and we found no evidence of 
interdependence within our predictors.

The OLS model indicates that mortality rates 
increase as the percentage of female-headed 
households in the county and county income 
inequality increases. While, as the median value 
of homes in a county and the percentage of the 
population that is Hispanic or black increase, the 
county mortality rate tends to decrease. When we 
control for the variability in the population size 
using the weighted least squares model, we see 
a mortality advantage for counties with a high 
percentage of the population that is rural, that 
have a higher percentage of the population that 
is black, and for counties that have higher-than-
average median home values. We observe a 
mortality disadvantage for counties with a high 
percentage of female-headed households and 
high county unemployment rates. We also notice 
the effect of income inequality dropout of the 
model when we add the weighting variable; 
this is an effect of the weighting process.

To assess the autocorrelation in the model 
residuals, we estimate Moran’s I for the residuals 
of the OLS and weighted least squares models 
following the procedure outlined in Cliff and Ord 
(1981), which controls for the fact that the residu-
als are from a linear model fi t, not regular spatial 
data. The resulting value of Moran’s I for the OLS 
model is 0.366 (z = 34.34, P = <0.0001), indicating 
a highly signifi cant degree of global autocorrela-
tion in the OLS model residuals. The value of 
Moran’s I for the weighted least squares model 
is lower at 0.192 (z = 18.09, P = <0.0001) but still 
shows autocorrelation in the model residuals.

Based on these results, we proceed with esti-
mating the spatial regression models. The results 
of these models are presented in Table 3. We 
compare the OLS with the spatial error and lag 
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Table 2. Results of OLS and weighted OLS models for US county mortality rates, 1998–2002.

Estimate
Standard 

error
Robust 

standard error
95% Confi dence 

interval1 z-Test, Pr(>|z|)1

OLS model
(Intercept) 0.000 0.015 0.014 (−0.015, 0.015) 0, 1
% Rural population z −0.019 0.019 0.028 (−0.037, 0) −0.98, 0.327
% Black population z -0.237 0.028 0.058 (−0.265, −0.21) −8.55, <0.0001
% Hispanic population z -0.198 0.016 0.019 (−0.214, −0.182) −12.341, <0.0001
% Female HH heads z 0.611 0.032 0.077 (0.579, 0.643) 18.911, <0.0001
Unemployment rate z 0.025 0.017 0.022 (0.008, 0.043) 1.458, 0.145
Median house value z -0.230 0.018 0.022 (−0.248, −0.212) −12.812, <0.0001
Population density z 0.008 0.017 0.030 (−0.009, 0.024) 0.454, 0.65
Gini coeffi cient (Income) z 0.144 0.017 0.044 (0.127, 0.161) 8.411, <0.0001

Weighted OLS model
Intercept −0.073 0.036 0.036 (−0.109, −0.037) −2.013, 0.044
% Rural population z -0.180 0.029 0.064 (−0.209, −0.152) −6.317, <0.0001
% Black population z -0.182 0.035 0.098 (−0.217, −0.147) −5.227, <0.0001
% Hispanic population z 0.015 0.018 0.085 (−0.003, 0.032) 0.835, 0.404
% Female HH heads z 0.747 0.034 0.121 (0.713, 0.781) 21.958, <0.0001
Unemployment rate z 0.074 0.021 0.081 (0.052, 0.095) 3.453, 0.001
Median house value z -0.314 0.027 0.078 (−0.341, −0.288) −11.826, <0.0001
Population density z 0.334 0.206 0.151 (0.128, 0.539) 1.623, 0.105
Gini coeffi cient (income) z −0.042 0.010 0.069 (−0.052, −0.032) −4.195, <0.0001

Bold entries represent signifi cant relationships at at least the a = 0.05 level.
1 The hypothesis tests are performed using the ordinary standard errors, not the robust estimates.
OLS = ordinary least squares; HH = high–high cluster; Pr = probability.

models using the standard likelihood ratio test 
2 * [−LLOLS − (−LLSpatial)], with 1 degree of freedom 
because the only difference in the spatial and 
OLS models is the estimation of the r parameter 
in both spatial models. We compute the same 
likelihood ratio test for the weighted spatial 
regression model but we compare it only with the 
weighted OLS model. We also present the results 
of the general and Robust Lagrange multiplier 
statistic for the OLS model.

The spatial error model can be interpreted as 
controlling for the autocorrelation in the model 
error term. The r parameter is 0.635, with a stan-
dard error of 0.019, indicating signifi cant auto-
correlation in the model error terms of the OLS 
model. After controlling for the autocorrelation 
in the error term, we see overall decreases in the 
magnitude of the regression coeffi cient for the 
percentage of the county population that is His-
panic and observe a decrease in the importance 
female-headed households, median home values, 
and the county Gini coeffi cient in predicting 
county mortality rates. We return to these fi nd-
ings in our discussion. The spatial error model 
displays a highly signifi cant improvement in 

total fi t over the OLS model when the likelihood 
ratio test is examined (likelihood ratio is 840.47, 
with 1 degree of freedom, P < 0.0001).

The spatial lag model indicates slightly dif-
ferent results from the OLS or error models. Com-
pared with the OLS model, we see that the 
percentage of the county population that is rural 
becomes signifi cant and indicates a reduction in 
the mortality rate. We also observe an increase in 
magnitude for the effect of the percentage of the 
county population that is black. We see reduc-
tions in the magnitudes of all other predictor vari-
ables in the model. When we compare the spatial 
lag model with the OLS model using a likelihood 
ratio test, we see a signifi cant improvement in fi t 
of the spatial lag model over the OLS model (like-
lihood ratio is 870.35, with 1 degree of freedom, P 
< 0.0001). The spatial autoregressive parameter, 
r, indicates a signifi cant autocorrelation in the 
lagged mortality rates themselves. This repre-
sents a model-based confi rmation of the patterns 
seen in the map in Figure 1, where several clusters 
of high and low mortality rates exist across the 
US. The weighted spatial regression model shows 
some notable differences in coeffi cients compared 
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Table 3. Results of spatial regression models for US county mortality rates, 1998−2002.

Estimate
Standard 

error
Robust 

standard error
95% Confi dence 

interval1 z-Test, Pr(>|z|)1

Spatial error model
(Intercept) 0.002 0.033 0.033 (−0.032, 0.035) 0.048, 0.962
% Rural population z −0.021 0.017 0.027 (−0.039, −0.004) −1.255, 0.21
% Black population z -0.288 0.033 0.065 (−0.322, −0.255) −8.649, <0.0001
% Hispanic population z -0.073 0.024 0.033 (−0.097, −0.048) −2.981, 0.003
% Female HH heads z 0.507 0.031 0.078 (0.476, 0.538) 16.482, <0.0001
Unemployment rate z 0.034 0.018 0.027 (0.016, 0.052) 1.862, 0.063
Median house value z -0.232 0.020 0.031 (−0.252, −0.212) −11.404, <0.0001
Population density z 0.037 0.020 0.038 (0.017, 0.056) 1.884, 0.06
Gini coeffi cient (income) z 0.097 0.016 0.053 (0.081, 0.113) 6.207, <0.0001
r 0.635
LR test vs. OLS 840.47, 1 df

Spatial lag model
(Intercept) −0.003 0.012 0.012 (−0.016, 0.009) −0.275, 0.784
% Rural population z -0.036 0.016 0.025 (−0.052, −0.02) −2.278, 0.023
% Black population z -0.259 0.023 0.048 (−0.282, −0.236) −11.108, <0.0001
% Hispanic population z -0.104 0.014 0.018 (−0.118, −0.091) −7.644, <0.0001
% Female HH heads z 0.474 0.028 0.066 (0.447, 0.502) 17.155, <0.0001
Unemployment rate z 0.009 0.015 0.019 (−0.005, 0.024) 0.636, 0.525
Median house value z −0.181 0.015 0.017 (−0.197, −0.166) −11.9, <0.0001
Population density z 0.022 0.014 0.017 (0.008, 0.036) 1.548, 0.122
Gini coeffi cient (income) z 0.073 0.014 0.047 (0.058, 0.087) 5.01, <0.0001
r 0.555
LR test vs. OLS 870.35, 1 df

Weighted spatial model2

(Intercept) -0.133 0.052 0.052 (−0.185, −0.081) −2.555, 0.011
% Rural population z -0.109 0.027 0.031 (−0.136, −0.082) −4.024, <0.0001
% Black population z -0.205 0.042 0.053 (−0.247, −0.163) −4.885, <0.0001
% Hispanic population z 0.084 0.025 0.026 (0.058, 0.109) 3.304, 0.001
% Female HH heads z 0.736 0.035 0.076 (0.701, 0.771) 21.274, <0.0001
Unemployment rate z 0.036 0.023 0.025 (0.013, 0.059) 1.589, 0.112
Median house value z -0.239 0.032 0.022 (−0.271, −0.207) −7.436, <0.0001
Population density z −0.088 0.240 0.076 (−0.327, 0.152) −0.366, 0.715
Gini coeffi cient (income) z -0.049 0.010 0.051 (−0.059, −0.039) −4.95, <0.0001
r 0.408
LR test vs. weighted OLS 269.71, 1 df

Bold entries represent signifi cant relationships at at least the a = 0.05 level.
1 The hypothesis tests are performed by using the ordinary standard errors, not the robust estimates.
2 The robust standard errors reported for the weighted spatial regression model have been corrected for heteroskedasticity by 
using the method of White (1980), not the sandwich estimator as in the other models.
LR = likelihood ratio test; df = degrees of freedom; OLS = ordinary least squares; HH = high–high cluster; Pr = probability.

with the unweighted spatial regression models. 
We see a slight mortality disadvantage for coun-
ties with high percentages of the population that 
are Hispanic and we see a mortality advantage 
for counties with higher income inequality. This 
second fi nding seems at fi rst to be erroneous, but, 
when we consider that the counties with the 
highest weight in this analysis were those with 

smaller population sizes, this could make sense, 
as these places often have marked inequality 
between residents. We see an autoregression 
coeffi cient of 0.408, lower than that of either the 
error or lag model. In total, we see that, by includ-
ing a weighting factor for the population size of 
counties, we reduce some but not all of the auto-
correlation in our data. We also see a signifi cant 
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improvement of the weighted spatial regression 
model over the weighted OLS model (likelihood 
ratio test (LR) = 269.71, P = <0.0001).

Although we cannot perform the likelihood 
ratio test between the spatial error and lag models 
(df = 0), the Akaike Information Criteria (AIC) 
values of the two models indicate a slightly better 
model fi t for the spatial lag model (AIC = 6552.16) 
than the error model (AIC = 6582.05). This sug-
gests that the spatial process generating the data 
may operate more on the dependent variable 
than the error component of the data. While not 
comparable with the other spatial regression 
models, the weighted model has an AIC of 
11,751.18, compared to the AIC from the weighted 
OLS model of 12,018.89, indicating an improve-
ment in fi t over the latter. The basic Lagrange 
multiplier statistics (Anselin et al., 1996) for the 
spatial lag model indicates that the spatial lag 
model is a slightly better model specifi cation in 
this case than the error model [Lagrange multi-
plier (error) 1153.87, P = <0.0001; Lagrange mul-
tiplier (lag) 1198.78, P = <0.0001]. This is confi rmed 
by the robust Lagrange multiplier statistics, 
which show a larger degree of differentiation 
between the models [Robust Lagrange multiplier 
(error) 70.85, P = <0.0001; Robust Lagrange mul-
tiplier (lag) 115.75, P = <0.0001]. This suggests 
that the spatial lag model may provide a better 
representation of the process in this setting. 
However, because of the very small difference 
between these values, we argue that conceptual 
considerations about the spatial process inherent 
to the outcome have to be considered when 
selecting the most appropriate spatial model for 
analysis. Based on the very small difference 
between these diagnostic statistics, we still think 
a spatial error model captures the spatial depen-
dence in county mortality rates, largely based on 
the spatial clustering of the predictor variables 
noted in Figure 2. Lastly, we calculated the 
Breusch–Pagan test for the presence of heteroske-
dasticity in both the spatial error and lag models. 
Both models displayed signifi cant heteroskedas-
ticity in their residuals (Spatial error model 
Breusch–Pagan test = 307.98, P = < 0.0001; Spatial 
lag model Breusch–Pagan = 334.052, P = < 0.0001). 
To assess the impact of this on the hypothesis 
tests of the parameter values in Table 1, we cal-
culated robust sandwich estimates of the regres-
sion parameter standard errors. For the OLS 
model, the signifi cance of all relationships is 

confi rmed when robust estimates are used. In the 
weighted model, the effects of population density 
and the unemployment rate become insignifi cant 
when robust standard errors are used. In the 
spatial error model, the Gini coeffi cient becomes 
insignifi cant when robust errors are used, and, in 
the spatial lag model, both the percentage of the 
county population that is rural and the Gini 
coeffi cient become insignifi cant when robust 
standard errors are used. When we use 
heteroskedasticity- corrected (White, 1980) stan-
dard errors for the weighted spatial regression 
model, we see the only parameter affected is the 
effect of the Gini coeffi cient, which becomes 
insignifi cant. When we consider these effects, we 
see the signifi cant relationships become more 
consistent across model fi ts in our analysis.

DISCUSSION

Based on the analyses presented above, we con-
clude that there is signifi cant spatial patterning 
in US county mortality rates, which we expected 
from previous work. There is also evidence of 
local spatial autocorrelation in all of our county-
level social and economic independent variables. 
Signifi cant local spatial clustering in each of these 
variables highlights the need for empirical 
research in the social sciences more broadly and 
in demography particularly that considers the 
relationships present within and between these 
spatial clusters. To date, most spatial analyses in 
demography examining health outcomes have 
remained fairly exploratory and descriptive. This 
could be a result of the lack of literature speaking 
to the spatial processes inherent to specifi c health 
outcomes or application of spatial statistical 
methods to inappropriate levels of geography 
leading to confusion about the existence or not 
of spatial patterns.

We argued that the econometric literature gives 
us a solid defi nition of the potential sources of 
spatial heterogeneity, which can be a result of 
errors associated with unmeasured variables in 
empirical model specifi cations or spatial pro-
cesses that say neighbours have similar values of 
variables (Baller et al., 2001). However, a critical 
component of the defi nition of spatial heteroge-
neity speaks broadly to the variation in measures 
across space (Anselin, 1995). Therefore, many 
studies of spatial processes in health may mask 
the true underling spatial nature of a specifi c 
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outcome by relying on more global measures 
of the spatial process.

Basing on our understanding of the spatial 
pattern in US county mortality rates and ecologi-
cal correlates with these rates, we hypothesised 
that a spatial error model would best fi t the data 
underlying the presence of spatial heterogeneity. 
While the standard diagnostic criteria used in 
most spatial data analyses indicated that a spatial 
lag model offered a better fi t to our data, the very 
small absolute difference in the Robust Lagrange 
multiplier statistic between the lag and error 
models makes us question the reliance on this 
value in selecting the best spatial model for inter-
pretation. We still believe that the spatial error 
model best speaks to the spatial pattern observed 
in US county mortality rates because it is unlikely 
that a county’s total morality rate works in a dif-
fusive manner to increase or decrease the mortal-
ity rate in a neighbouring county. Instead, we 
think that the spatial pattern noted in this analy-
sis is largely a result of the existence of autocor-
relation among omitted variables in our empirical 
model and the local variation in resources across 
the US that cannot be captured in this type of 
model specifi cation. It would seem most appro-
priate to use a spatial lag model to examine health 
outcomes that have a true diffusive nature, such 
as the incidence of an infectious disease, or rely 
on a set of established network relationships 
among areas that would lead to spatial clusters 
in those outcomes. Likewise, a spatial lag model 
would probably best approximate a very local 
spatial process, while a spatial error model may 
best estimate spatial patterns in health outcomes 
that are found in much larger spatial units. When 
we consider the weighted spatially autoregres-
sive model, we see that we further reduce the 
amount of autocorrelation in the data by allow-
ing for the effect of heterogeneous population 
sizes, which itself has a signifi cant amount of 
autocorrelation (Moran’s I = 0.360, P < 0.0001).

We suggest that by using models that control 
for spatial variation and spatial structure in our 
empirical observations, particularly with topics 
that have an inherent spatial component, we can 
begin to separate the underlying spatial processes 
from the noise inherent in the data. However, we 
think research using spatial statistical techniques 
needs to focus on local spatial clusters in out-
comes because the true mechanism underlying 
most spatial clusters in health outcomes varies 

greatly across space. Demographic analyses 
interested in spatial dynamics need to reach 
across diverse fi elds of study to better under-
stand the application and interpretation of spatial 
statistical methods to local spatial patterns. The 
theoretical literature related to spatial processes 
in health or other outcomes is not likely to develop 
unless more local applications of spatial pro-
cesses are considered more fully and developed 
at the appropriate geographical scale. We feel 
that it is the underlying processes inherent to 
spatial analysis that needs further development, 
especially when aggregate-level population pro-
cesses are being considered. More focused, con-
ceptually grounded applications of local spatial 
statistical methods may help in making decisions 
about the appropriate use of spatial regression 
models on aggregate data, or more specialised 
local spatial statistical models that consider much 
smaller areas may be warranted for certain out-
comes. Beyond the study of county mortality 
rates, the examination of local spatial clusters 
will be valuable in future research considering 
the clustering of poverty, health-care access, and 
socio-economic inequality, given that these phe-
nomena are unevenly distributed across areas of 
the US and in other settings and show aggregate 
associations with health differentials.
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