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A COMPUTER MOVIE SIMULATING URBAN 

GROWTH IN THE DETROIT REGION 

W. R. TOBLER 

University of Michigan 

In one classification of models [16] 
the simulation to be described would be 
considered a demographic model whose 
primary objectives are instructional.' 
The model developed here may be used 
for forecasting, but was not constructed 
for this specific purpose, and it is a 
demographic model since it describes 
only population growth, with particular 
emphasis on the geographical distribu- 
tion of this growth. 

As a premise, I make the assumption 
that everything is related to everything 
else. Superficially considered this would 
suggest a model of infinite complexity; 
a corollary inference often made is that 
social systems are difficult because they 
contain many variables; numerous people 
confuse the number of variables with the 
degree of complexity. Because of clo- 
sure, however, models with infinite 
numbers of variables are in fact some- 
times more tractable than models with 
a finite but large number of variables 
[27]. My point here is that the utmost 
effort must be exercised to avoid writing 
a complicated model. It is very difficult 
to write a simple model but this, after 
all, is one of the objectives. If one plots 
a graph with increasing complexity on 
the abscissa, and increasing effectiveness 
on the other axis, it is well known that 
science is only asymptotic to one hun- 
dred percent effectiveness. No scientist 
claims otherwise. But the rate at which 
this effectiveness is achieved is extremely 
important, ceterus paribus. In other 
words, the objective is high success with 
a simple model. Statistical procedures 
which order the eigenvalues are popular 
for just this reason. Because a process 
appears complicated is also no reason 
to assume that it is the result of com- 

- For a review of urban models see Lee [21]. 

plicated rules, examples are: the game 
of chess, the motion of the planets before 
Copernicus; evolution before Darwin 
and the double helix, geology before 
Hutton, mechanics before Newton, geog- 
raphy before Christaller, and so on [5]. 
The plausibility of models also varies, 
but this is known to be an incomplete 
guide to the scientific usefulness of a 
model. The model I describe, for exam- 
ple, recognizes that people die, are born, 
and migrate. It does not explain why 
people die, are born, and migrate. Some 
would insist that I should incorporate 
more behavioral notions, but then it 
would be necessary to discuss the psy- 
chology of urban growth; to do this 
properly requires a treatise on the bio- 
chemistry of perception, which in turn 
requires discussion of the physics of ion 
interchange, and so on. My attitude, 
rather, is that since I have not explained 
birth, death, or migration, the model 
might apply to any phenomenon which 
has these characteristics, e.g., people, 
plants, animals, machines (which are 
built, moved, and destroyed), or ideas. 
The level of generality seems inversely 
related to the specificity of the model. 
A model of urban growth should apply 
to all 92,290 cities [9, p. 81] (not just to 
one city), now and in the future, and 
to other things that grow. These are 
rather ambitious aims. Conversely, the 
model attempts to relate population 
totals only on the basis of prior popula- 
tions, and neglects employment oppor- 
tunities, topography, transportation, and 
other distinctions between site qualities. 
Consequently the only difference be- 
tween places in the model is their popu- 
lation density, and other demographic 
differences are ignored. Similarly, the 
population model attempts to relate 
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population growth only to population in 
the immediately preceding time period. 
Since, by assumption, everything is re- 
lated to everything else, such a neglect 
of history may prove disastrous. To in- 
clude all history, however, is known to 
require integral equations of the Volterra 
type [34] and these complicate the 
presentation.2 We may also determine 
empirically whether a neglect of history 
has serious consequences, at least in the 
short run. In summary, the many simpli- 
fications of the model are acknowledged 
as advantages, particularly for pedagogic 
purposes. 

Conceptually, I have been influenced 
by Borchert's model of the twin cities 
region [2]. This Was later applied to De- 
troit by Deskins, and I have used his 
data [8]. As formulated by Borchert and 
Deskins the model is in graphical form 
and suggests that the lines of growth 
coincide with extrapolations, modified 
by local conditions, of the orthogonal 
trajectories to the level curves of popu- 
lation density. The difficult step is to 
estimate the amount of growth along 
these trajectories. Presumably this is pro- 
portional to the population pressure, or 
the gradient of the population density 
[23]. 

Following Pollack [26] specific equa- 
dP 

tions may now be postulated, letting - 

denote population growth at any loca- 
tion: 

dP 

dt 

dP 

dt 

dP 

dt 

k, constant regional growth, or 

kP, proportional growth, or 

k (1 - a)P, logistic growth, or 

RdP _, /ap\- p2 p -l/2 

d k 
(~)x + (~y) , growth dt eox \Cy / 

is proportional to the population grad- 
ient, or 

2 Also see Brown [4]. 

dP k a2P ` 12 - = k + , growth is 
dt ax2 ay2 

proportional to the rate of change of the 
population gradient, or 

d"P a2P a2P - = k + k, the accel- 
dt2 ax2 ay2 
eration of growth is proportional to the 
population curvature, and so on. 

Each of these equations could now be 
examined in some detail, or converted 
to finite difference form for empirical 
estimation purposes, but I prefer to 
generalize in a different direction. 

The simulation of urban growth raises 
questions of geographical syntax. As an 
example, recall that many predictive 
models are of the form 

C = BA 

where A is an n x 1 vector of known 
observations, B is an m x n transforma- 
tion matrix of coefficients or transition 
probabilities, and C is the m x 1 vector 
to be predicted. This scheme seems in- 
adequate as a geographical calculus. 
The geographical situation is better rep- 
resented, in a simplified special case, as 

D = NGE 

where G and D are now m x n matrices, 
isomorphic to maps of the geographical 
landscape [32], and N and E are coeffi- 
cient matrices representing North-South 
and East-West effects. The matrix D 
could of course be converted into a long 
column vector (mn x 1) by partitioning 
along the columns and the placing of 
these one above the other. But this 
destroys the isomorphism to the geo- 
graphical situation. Since "the purpose of 
computing is insight, not numbers," I 
aim for a simple structure [13]. Using 
geographical state matrices seems more 
natural than using state vectors. 

To some extent attempts to simulate 
urban growth are also related to the 
problem of comparing geographical 
maps, a question which occurs frequent- 
ly in geography [30]. Let me clarify this 
analogy. Suppose I have a map showing 
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the 1930 distribution of population in the 
Detroit region, and a map of the 1940 
distribution. I would like to measure the 
degree of similarity of these two maps. 
Some type of correlation coefficient is 
needed. Certainly this is necessary to 
evaluate an urban growth model, which 
can be considered a means of predicting 
a map of population distribution. In 
order to evaluate the coefficient of cor- 
relation properly, I should have some 
notion of the probability of two ran- 
domly selected maps being similar. This 
requires some information concerning 
the distribution of actual population 
maps over the set of all possible popu- 
lation maps. Suppose that the popula- 
tion data are assembled by one-degree 
quadrilaterals of latitude and longitude, 
of which there are approximately 360 x 
180 on a sphere. If only land areas are 
considered, say 90 x 180-1.6 x 104 cells. 
If a maximum population density of 5000 
persons per square-mile is allowed, each 
quadrilateral can contain from zero to 
roughly 17.5 x 106 people. The number 
of possible population maps is then the 
number of states raised to the number 
of cells [71, that is, 

(17.5 x 106) 1.6 x 104I 1051 

Not all of these are equally likely, and a 
prediction much better than random can 
be made by asserting that there will be 
no change from the present. This sug- 
gests that, from an information-theoretic 
point of view, a prediction does not con- 
tain a great deal of information! This 

unhappy conclusion is avoided by recog- 
nizing that geographical predictions 
must be discounted for the effect of per- 
sistence. 

The usual measure of association is 
the Pearsonian correlation coefficient. 
This not only serves as a measure of 
similarity, but also provides, via the 
linear regression equation, a means of 
prediction. Most discussions of methods 
of comparing maps overlook this impor- 
tant feature. This clearly suggests pre- 
dicting the 1940 population of a cell as 

a linear function of the 1930 population 
of that cell, that is, 

Pijl40 
- A + B . 

Pij1930 

Now this, as a model, has advantages 
and disadvantages. For example, discrep- 
ancies between the model and the actual 
situation might be used as a measure of 
the perceived suitability of a site for 
occupation. More cogently, a major dis- 
advantage is that it ignores the premise 
"everything is related to everything else." 
The geographical interpretation of this 
premise should be that population 
growth at place A depends not only on 
the previous population at place A but 
also on the population of all other places. 
More concretely, population growth in 
Ann Arbor from 1930 to 1940 depends 
not only on the 1930 population of Ann 
Arbor, but also on the 1930 population 
of Vancouver, Singapore, Cape Town, 
Berlin, and so on. Stated as a giant mul- 
tiple regression, the 1940 population of 
Ann Arbor depends on the 1930 popula- 
tion of everywhere else; that is, it is a 
function of about 1.6 x 104 variables, if 
population data are given by one-degree 
quadrilaterals. Note that the meteorolo- 
gist has a similar problem when attempt- 
ing to predict the weather, and solves it 
in the following ingenious manner [25, 
pp. 238-56; 14, 36, 10, 15, 11]. The world 
wide (or hemispheric) distribution of 
the pertinent weather elements are sum- 
marized by an approximating equation. 
The coefficients of this equation are then 
used as surrogate variables, much re- 
duced in number, representing the ac- 
tual distribution. Geographers have also 
recently used such trend equations [6], 
but not in this interesting manner. The 
global distribution of population could 
now be approximated by an equation 
with a modest number of coefficients. 
Alternately, the world population poten- 
tial [291 could serve as a single surro- 
gate for the 1.6 x 104 variables. Instead 
of using this approach I invoke the first 
law of geography: everything is related 
to everything else, but near things are 
more related than distant things. The 
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specific model used is thus very paro- 
chial, and ignores most of the world. 

There is merit in considering urban 
growth from yet another point of view. 
Think of it as a linear input-output sys- 
tem; that is, the 1930 population distri- 
bution serves as input to a black box, 
the output of which is the 1940 popula- 
tion distribution [31]. Two points of 
view can be taken: (a) given the inputs 
and outputs, calculate the characteristics 
of the black box, i.e., infer the process; 
or (b) design the system to achieve a 
specific output. The latter is what an en- 
gineer does when he builds a radio, or 
what some urban planners hope to do. 
The present intent is to deduce some 
characteristics of the process. 

A convenient method of studying lin- 
ear, origin invariant black boxes is by 
means of the response to a unit impulse: 

BLACK OUPURT BOX OUTPUT INPUT 

In the present instance the input and 
output are both two-dimensional distri- 
butions, and it is assumed that the sys- 
tem consists of a linear, positionally 
invariant, local operator. Such processes 
are less familiar to engineers but occur 
in the study of optical systems [20, 17, 
pp. 278-81; 28]. The equivalent to the 
unit impulse is the unit inhabitant. Let 
us see what happens to him in a decade: 

ii.tiES' X/-B . iYI: '000 >'4,5,52t50_ t&0 

(a) 
(b) 
(c) 
(d) 
(e) 

he has 0.3 children, 
0.2 of him dies, 
0,05 of him moves to California, 
0.4 of him moves to the suburbs, 
0.6 of him does nothing 

what more widely than originally. 
This then is the final model presented. 

The population of a cell, 1.5 miles on a 
side, is estimated as a linear function of 
the same and neighboring cells in the 
preceding time period, i.e., where the 
unit inhabitant came from, rather than 
where he went. This result can be visu- 
alized in several equivalent fashions. 
Consider the following Gedanken experi- 
ment. Randomly sample the population 
of the region under study and plot a map 
showing the locations of individuals in 
1930 connected by a directed line to 
their locations in 1940. Now translate 
each line to a common origin, thus creat- 
ing a migration rose. The end points of 
the migration vectors constitute a prob- 
ability density surface. A comparable re- 
sult could be achieved by a random sam- 
ple of select cells and a study of the 
behavior of all of the inhabitants of these 
cells, followed by an averaging over all 
of the sampled cells. The net result 
should not differ appreciably from the 
present more indirect inferential pro- 
cedure of comparing maps. Mathemati- 
cally the distribution in, say, 1930 can 
be considered to be described by P(x, y), 
that in 1940 by P'(x, y), and the spread 
of the unit inhabitant by W(u, v). The 
assumption is that each individual in 
P(x, y) undergoes an identical spreading, 
W(ut, v)P(x + u, y + v) and the final 
result is the sum of the individual ef- 
fects, i.e., 

+ c + o 

P'(x, y) W(u,v) 

- cc --0o 

P(x + u, y + v) dudv 

Now if F (W) denotes the Fourier trans- 
form of W(u,v), 

/ f 

- o3 -o00 

These data are fictitious, but observe 
that they include, birth, death, and mi- 

gration. The net result is 1.15 inhabi- 
tants, geographically distributed some- 

F (W) 

exp(2i-i(au + by)) dtudv 

W(tl,v) 
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then, by the two dimensional convolution 
theorem 

F (P') = F (W) F (P) 

Thus, by converting to the frequency 
domain there exists a convenient pro- 
cedure for calculating the spread func- 
tion. Specific computational details, and 
application to other geographical situa- 
tions are given in an earlier paper [33]. 
The similarity to Hagerstrand's Mean In- 
formation Fields [12], and to an approxi- 
mately 1000-region input-output study 
[18] should be apparent. A stochastic 
model can be written along similar lines 
[I . 

For the initial computer movie [19] 
the equations used are 

The expectation of course is that the 
movie representations of the simulated 
population distribution in the Detroit 
region will provide insights, mostly of an 
intuitive rather than a formal nature, into 
the dynamics of urban growth. Compari- 
son of the simulated values for 1930, 
1940, 1950, and 1960 with the actual 

1930 + At 
Pij 

p - +2 

p= -2 

q = +2 
-~^ 7 ~1930 

L 1~Epql Pi+p,P j+q 

q- -2 

with Wpq = Apq + B,,At, where At is 
measured in years from 1930. Apq and 
Bpq were obtained from the coefficients 
given in the earlier paper [33] by 
weighting the 1950/60 coefficients twice 
as much as the 1930/40 and 1940/50 
values. An additional movie, giving 
equal weight to all of the time periods 
by using 

Wpq Apq + B,, At + C,)q (At)2 

may be more realistic. Both of these 
models describe time variant systems 
[3]. The movies simulate from 1910 to 
1990 in time steps of At = 0.5 and At = 
0.05 years. A time step of one frame per 
month would appear to be the most 
appropriate speed, assuming viewing at 
16 frames per second. An interesting 
question is whether the same coefficients 
could be used for some other urban 
region of the United States since the 
exogenous conditions are obviously rel- 
atively constant. 

Actual population growth, Detroit Region 
(non-linear vertical scale). 

values for these dates shows that the 
model differs from a simple interpola- 
tion, which could in fact be made to pro- 
vide an exact fit to the data and its time 
derivatives. Viewing the movies suggests 
that the model introduces an excessive 
amount of smoothing, and that the de- 
cline in population of the CBD does not 
seem to have been adequately captured 
by the equations. These inadequacies 
may be due to several factors. For ex- 
ample, the neighborhood over which the 
spread function was estimated may have 
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been too small, or the 8200 square-mile 
region over which it is averaged too 
large. Both of these deficiencies could 
be explored by additional computations 
using the available data. Since there is 
some evidence that diffusion waves occur 
in city growth [24, 22, 35, pp. 326-40], 
an equation somewhat more general 
than those postulated earlier may be 
proposed to characterize geographical 
change, namely, 

n 

0 
t 

GxP 
+ p 

0 

where k is a variable function of x, y, 
and t. This is clearly an attempt to adapt 
the linear differential equation common- 
ly encountered in systems analysis to 
take into account the geographical as- 
pects of the problem. It can also be 
viewed as a statistical procedure for pre- 
dicting a univariate geographical series, 
the usual exponential time discounting 
being extended to include exponential- 
like space discounting, each observation 
being related to a space-time cone of 
previous and nearby observations. There 
is no assurance, of course, that urban 

growth can be described by positionally 
invariant linear equations; eventual ex- 
tension to interactive multivariate geo- 
graphical forecasting is also required. 
From a pedagogic point of view the 
model presented here has the distinct 
advantage that its shortcomings are 
obvious. The model given here, for ex- 
ample, uses translationally invariant two- 
dimensional Fourier transforms, but a 
rotationally invariant Mellin-Fourier 
transform would seem more appropriate 
for cities. This would allow the spread- 
ing of the unit inhabitant to depend on 
his distance from the CBD, and this 
seems a more realistic approximation to 
the true situation. 
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