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The Spatial Patterning of County Homicide Rates: An
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The possibility that homicides can spread from one geographic area to another
has been entertained for some time by social scientists, yet systematic efforts to
demonstrate the existence, or estimate the strength, of such a diffusion process
are just beginning. This paper uses exploratory spatial data analysis (ESDA) to
examine the distribution of homicides in 78 counties in, or around, the St. Louis
metropolitan area for two time periods: a period of relatively stable homicide
(1984–1988) and a period of generally increasing homicide (1988–1993). The
findings reveal that homicides are distributed nonrandomly, suggestive of posi-
tive spatial autocorrelation. Moreover, changes over time in the distribution of
homicides suggest the possible diffusion of lethal violence out of one county
containing a medium-sized city (Macon County) into two nearby counties
(Morgan and Sangamon Counties) located to the west. Although traditional cor-
relates of homicide do not account for its nonrandom spatial distribution across
counties, we find some evidence that more affluent areas, or those more rural or
agricultural areas, serve as barriers against the diffusion of homicides. The pat-
terns of spatial distribution revealed through ESDA provide an empirical foun-
dation for the specification of multivariate models which can provide formal tests
for diffusion processes.

KEY WORDS: spatial patterning; homicide; county homicide rates; exploratory
spatial data analysis.

1. INTRODUCTION

Spatial analyses of crime have a long and distinguished history in crimi-
nology. Beginning with the pioneering work of Quetelet and Guerry in the
19th century and continuing with the seminal studies of the Chicago school
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in the beginning of the 20th century, research has demonstrated convinc-
ingly that knowledge about the location of criminal incidents can yield
powerful insights about the underlying dynamics of crime. As Dennis Ron-
cek (1993, p. 155) has observed recently, ‘‘Understanding crime requires
understanding where it happens as well as to whom and by whom.’’

The spatial approach to crime is particularly relevant to the provoca-
tive, but as yet largely untested, claim that violence spreads through a dif-
fusion process. The possibility that diffusion might characterize violence
has been raised most prominently in the public health and epidemiological
literature (cf. Hollinger et al., 1987; Kellerman, 1996). Loftin (1986, p. 550),
for example, proposes that assaultive violence can be usefully regarded as
‘‘analogous to disease,’’ capable of ‘‘contagious transmission.’’6 According
to this perspective, acts of violence tend to be mutually reinforcing. As infor-
mation about violent events is transmitted through social networks and
other media of communication, the probability of subseqent violence is
likely to increase. This kind of transmission process implies a definite spatial
patterning of violence because social networks and communication ‘‘flows’’
tend to exhibit a nonrandom geographic distribution.7

The present paper examines spatial clustering of homicide for an area
comprised of counties of varying population size and urban development
surrounding the city of St. Louis. Our analyses are based on the newly
developed methodology of exploratory spatial data analysis (ESDA). ESDA
is a collection of techniques for the statistical analysis of geographic infor-
mation. By combining descriptive and traditional graphs in an interactive
computing environment, it augments visualization through maps with
hypothesis tests for spatial patterns. We apply ESDA to county-level homi-
cide in the St. Louis area to illustrate the utility of this approach for ident-
ifying and interpreting the spatial clustering of criminal violence.

2. RATIONALE FOR ESDA

Given the limited knowledge of processes for the spatial distribution of
homicide, our methodology is carried out within the exploratory data analy-
sis (EDA) paradigm in general and exploratory spatial data analysis

6The possibility of a contagion effect of violence has also been discussed in the literature on
Southern lynchings. According to one argument, a lynching in one area results from residents
of that area imitating a recent lynching elsewhere (e.g., Ayers, 1984, p. 243). An alternative
position, however, describes lynching as a form a ‘‘racial terrorism,’’ suggesting the possibility
of a deterrent effect in which the likelihood of lynching in one area may actually be reduced
by mob activity nearby (see, e.g., Tolnay et al., 1996).

7As a further illustration, the diffusion of assaultive violence may be driven by displacement.
Law enforcement activities designed to reduce drug activity have been shown to stimulate
such activity and violence in adjacent areas (Rasmussen et al., 1993).
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(ESDA) in particular. EDA consists of a collection of descriptive and
graphical statistical tools intended to discover patterns in data and suggest
hypotheses by imposing as little prior structure as possible (Tukey, 1977).
This then leads to ‘‘potentially explicable patterns’’ (Good, 1983, p. 290),
which may become the basis for more formal hypotheses and theoretical
constructs. Modern EDA methods emphasize the interaction between
human cognition and computation in the form of dynamically linked stat-
istical graphics that allow the user to manipulate directly various views of
the data (e.g., Cleveland, 1993; Buja et al., 1996). More specifically, ESDA
is a collection of techniques to describe and visualize spatial distributions,
identify atypical locations or spatial outliers, discover patterns of spatial
association, clusters or hot spots, and suggest spatial regimes or other forms
of spatial heterogeneity (Anselin, 1994, 1999, 1998; Haining 1990; Bailey
and Gatrell, 1995). In the remainder of this section, we first outline the
advantages of using an ESDA approach in the current context, followed by
a brief discussion of the limitations of traditional methodological
approaches.

2.1. Utility of the ESDA Paradigm for the Study of Diffusion

In the study of a diffusion process, a crucial parameter pertains to the
location of the initial ‘‘shock’’ to the system (the ‘‘innovation’’) relative to
the location of the ‘‘adopters’’ across space and over time. Adopters are
either immediate neighbors, members of the so-called mean information
field (contagious diffusion), or located in nodes connected to the origin of
the innovation in a hierarchical network fashion (hierarchical diffusion) (see
Hagerstrand, 1965, 1967; Brown, 1981). In either case, the process of dif-
fusion implies a resulting pattern of values for the variable of interest (homi-
cide rates) that is not spatially random but suggests higher incidences near
the location of the origin (following a wave-like pattern over time or a
distance-decay profile at any point in time) or near the location of the nodes
in the adoption network. In addition, the presence of ‘‘barriers’’ to the dif-
fusion process (either physical or socioeconomic in nature) would also imply
a lack of spatial randomness in the form of ‘‘regions’’ of low adoption rates
(low homicides) or clear frontiers to the extent of the spread of adoption.
Although the nonrandom distribution of homicide is consistent with several
competing explanations, a first step in the process of discovering patterns
of spatial diffusion is the comparison of observed values to a null hypothesis
of spatial randomness. If spatial randomness cannot be rejected, then there
is little support for a hypothesis of diffusion. If, on the other hand, spatial
randomness is not present, then there may be a diffusion process at work,
and any pattern in the location and magnitude of adoption is worthy of
further consideration.
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ESDA is especially useful to aid in this process, since it has at its core
a formal treatment of the notion of spatial autocorrelation, i.e., the phenom-
enon where locational similarity (observations in spatial proximity) is
matched by value similarity (attribute correlation) (for extensive treatments
see Cliff and Ord, 1981; Upton and Fingleton, 1985). The particular ESDA
techniques used in this paper focus on the detection of local patterns of
spatial autocorrelation through the implementation of so-called LISA stat-
istics (Anselin, 1995) in a system of dynamically linked graphic windows
that visualize the location, magnitude, and pattern in the data, such as box
maps, Moran scatterplots, and Moran scatterplot maps (Anselin, 1996;
Anselin and Bao, 1997; Anselin and Smirnov, 1998). This allows for the
identification of both local clusters reflecting positive or negative spatial
autocorrelation as well as spatial outliers (locations of high incidence sur-
rounded by locations of low incidence, and vice versa) that are significant
in the sense that these patterns are highly unlikely (at the chosen significance
level) to have occurred as the outcome of a spatially random process.

The existence of spatial clusters and outliers can be investigated in a
comparative static framework, in which one would expect shifts away from
the original innovative node (or ‘‘seed’’) in the form of outward moving
‘‘fringe’’ (spread). Constraints on the extent of the outward movement may
suggest the existence of barriers to diffusion.

Once the locations of clusters and spatial outliers have been identified,
a next step in an ESDA is to link these univariate patterns to similar (or
opposite) patterns in candidate covariates. This involves the application of
a combination of ESDA tools (such as Moran scatterplots and Moran scat-
terplot maps) with traditional EDA tools, such as histograms, bivariate scat-
terplots, and box plots. Of particular relevance here is the assessment of the
extent to which suggestive patterns of association between homicide and
covariates may be attributed to specific subregions in the data (spatial het-
erogeneity or spatial leverage) rather than to an association that applies
uniformly throughout the entire region. This allows for a form of decon-
struction of ‘‘accepted’’ empirical relations in terms of their local spatial
imprint.

2.2. Limitations of Conventional Methods

Our choice of an explicit ESDA approach is strengthened by the fact
that conventional methods to assess spatial (and space–time) diffusion, such
as map inspection and standard multivariate regression analysis, are poten-
tially flawed and may therefore suggest spurious relationships. While still
extremely popular in applied empirical work, the ‘‘visual inspection’’ of
maps has long been recognized by cartographers as unreliable in terms of
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detecting clusters and patterns in the data. Human perception is not suffic-
iently rigorous to assess ‘‘significant’’ clusters and indeed tends to be biased
toward finding patterns, even in spatially random data. It is by now widely
accepted that the map as a visualization device cannot be left to uncon-
strained human interpretation and needs to be augmented with tools to
formally assess pattern and structure (for an extensive discussion of modern
views on map visualization, see, e.g., Hearnshaw and Unwin, 1994; Mac-
Eachren and Kraak, 1997). Furthermore, classic tests for ‘‘global’’ spatial
autocorrelation, such as Moran’s I, while adept at rejecting a null hypothesis
of spatial randomness, are ill equipped to identify specific nodes of diffusion
and local patterns [for an early discussion of the limitations of global auto-
correlation statistics in the investigation of innovation diffusion, see Cliff
and Ord (1981, Chap. 3) ; a recent discussion of local vs. global measures is
given by Anselin (1995, 1999)].

Multivariate regression analysis may suggest spurious relationships
when the explicit ‘‘spatial’’ nature of the data is not incorporated into the
model specification. More precisely, ignoring spatial dependence andyor
spatial heterogeneity in the model may lead to false indications of signifi-
cance, biased parameter estimates, and misleading suggestions of fit (Anse-
lin, 1988; Cressie, 1993). While an explicit spatial econometric approach
would remedy this issue, we feel that at this stage there is no sufficiently
strong theoretical framework to suggest the precise form of the spatial pat-
tern of diffusion, a necessary element in a full specification of a spatial
econometric model. However, ESDA as such is not an end in itself, and it
is precisely the application of an organized ‘‘search for pattern’’ that will
lead us to a rigorous (though empirical) basis for a model specification that
can be used in the next stage of the analysis (a spatial multivariate regression
approach). In this paper, we focus on the ESDA aspects and leave the mode-
ling stage for a separate report.

3. DATA AND SCOPE OF THE ANALYSIS

3.1. Counties as Units of Analysis

We examine the spatial clustering of homicide at the county level. There
are obviously a wide range of alternative geographic units that could also
be used for spatial analysis [e.g., blocks, tracts, cities, MSAs, states; see,
e.g., the analyses by Block and Block (1993) and Cohen et al. (1998)]. The
selection of units of analysis should be guided ideally by knowledge of the
phenomenon under investigation, but as noted above, our current theoreti-
cal understanding of possible diffusion processes underlying serious violence
is primitive at best. We accordingly adopt the position that the wisest strat-
egy is to conduct research using a variety of units of analysis.
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Counties offer several distinct advantages for purposes of the present
research. First, counties are a common unit of measurement for data collec-
tion. The Census Bureau, Bureau of Labor Statistics, and many other fed-
eral and state data collection offices tabulate and distribute county-level
statistics. Hence, a wide range of social, economic, demographic, and politi-
cal data is available.

Second, counties, as opposed to cities or MSAs, represent the complete
range of social landscapes, from entirely rural to dense metropolitan areas
(Nielsen and Alderson, 1997, p. 14). This is important for a couple of
reasons. First, it allows us to place urban counties within a larger ecological
context and to examine the potential influence of urban homicide on sur-
rounding suburban and rural areas. We are thus able to examine whether
increasing rates of homicides in urban centers are followed by correspond-
ing increases in surrounding areas, suggesting a contagion process, or, alter-
natively, whether homicide tends to ‘‘implode’’ during a period of increasing
lethal violence, with homicides concentrated within the urban core while
surrounding areas are relatively unaffected. Second, previous research indi-
cates that the social structural determinants of homicide levels differ to some
extent in rural areas compared to metropolitan areas (Kposowa and
Breault, 1993). The selection of counties as units of analysis enables us to
consider whether processes related to the clustering of homicide differ sys-
tematically across areas with varying degrees of urban development.

Finally, there is precedent in the literature for using counties as units
of analysis in the study of homicide. The injury mortality atlases produced
by the Centers for Disease Control and Prevention are based on county-
level data. These atlases suggest striking spatial clustering of homicides
across counties for the nation at large (U.S. Department of Health and
Human Services, 1997). In addition, several recent studies have reported
theoretically meaningful results in analyses of the structural covariates of
homicide at the county level (De Fronzo and Hannon, 1998; Kposowa and
Breault, 1993; Kposowa et al., 1995).

Despite the desirable features of counties, we nevertheless acknowledge
important limitations associated with these units. Counties are administrat-
ive units, and they might not match the ecological scale at which diffusion
processes for homicide operate. Similarly, some counties cover large terri-
tories and are comprised of heterogeneous populations. It is conceivable,
therefore, that diffusion processes that operate only across relatively small
distances, or within relatively homogeneous aggregates, will not be detect-
able in our analyses. In addition, counties vary considerably in population
size; some rural counties have small populations. For these less populated
counties, homicide rates may be highly unstable. We consider the issue of
variance instability in the course of the analyses.
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3.2. The Spatial Area and the Temporal Period

The present research is part of a larger set of studies sponsored by the
National Consortium on Violence Research (NCOVR). As part of this
effort, selected sites have been chosen for within-city analyses of the spatial
and temporal patterning of homicide, including the city of St. Louis. Our
county-level research complements the St. Louis city study by examining
patterns and trends in homicide in the suburban and rural areas surrounding
St. Louis.

Our specific spatial area is the aggregate of counties in the St. Louis
Metropolitan Statistical Area (MSA) and additional counties within three
layers of adjacency to the MSA (Bureau of the Census, 1988). This selection
criterion yields a sufficient number of cases to compute meaningful statistics
of spatial clustering. At the same time, the selected geographic area is lim-
ited to counties that can be reasonably regarded as within a potential sphere
of influence of the St. Louis urban core.

Although St. Louis is the major metropolitan center within the geo-
graphic area, five additional counties contain cities of 50,000 residents or
more: St. Louis County, MO (Florissant) ; St. Clair County, IL (East St.
Louis) ; Boone County, MO (Columbia); Sangamon, IL (Springfield); and
Macon County, IL (Decatur) [the complete geographic area is depicted in
Fig. 1]. St. Louis County and St. Clair County are contiguous to St. Louis
and are part of the St. Louis MSA. The other three counties with medium-
sized cities are geographically separate from St. Louis and are parts of dis-
tinct MSAs.8 These geographically separated areas can be viewed as ‘‘spatial
subregimes.’’ In our analyses, we consider the possibility that these counties
with urban areas in the subregimes operate as ‘‘nodes’’ through which homi-
cide might diffuse in a hierarchical network fashion.

We have collected annual data for the St. Louis MSA and surrounding
counties for the 1979–1995 period. For reasons explained below, the present
analyses focus on a subset of those years: 1984–1993.

3.3. Data Sources

The homicide data for this study come from the National Center for
Health Statistics (NCHS) mortality files. These data are available on the

8In addition to the St. Louis MSA, there are three other MSAs in the region: the Columbia
MSA (containing Boone County, MO), the Springfield MSA (containing Sangamon and Men-
ard Counties, IL), and the Decatur MSA (containing Macon County, IL). The county farthest
from the city of St. Louis in the spatial area is Texas County, MO, the centroid of which is
132 miles from St. Louis.
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Fig. 1. St. Louis landscape: city of St. Louis (red), remainder of St. Louis MSA (yellow), and
other cities with populations larger than 50,000. [Maps with colors can be viewed at htpp:yy
www.albany.eduycsdaydiffusion.html].

Centers for Disease Control and Prevention’s (CDC) web-page.9 ‘‘Homi-
cides’’ refer to deaths coded as E960 to E969 using the International Cause
of Death (ICD) classification.

In previous research these vital statistics on homicide from the NCHS
have been compared with the criminal homicide data provided by the Fed-
eral Bureau of Investigation (FBI) (Riedel, 1999; Rokaw et al., 1990). In
general, the NCHS recording system catches more homicides than that of
the FBI. Because the FBI is dependent on reports from police agencies, and
because not all police agencies make reports to the FBI, national NCHS
figures are typically higher than those of the FBI (Riedel, 1999).

The homicide data used here are aggregated by decedents’ county of
residence and expressed as a rate per 100,000 resident population. This is
the procedure recommended by the CDC on the grounds that it is difficult
to estimate the size of the population at risk accurately when data are aggre-
gated by county of occurrence (U.S. Department of Health and Human
Services, no date, p. 5). We follow the precedent of CDC in the present

9We used the CDC’s WONDER system to obtain the homicide data.
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research to illustrate ESDA, although we caution that the selection of place
of residence versus place of occurrence may affect interpretations about
spatial patterning and possible diffusion processes.10

To select possible covariates of homicide, we began with the seminal
work of Land et al. (1990) and used decennial census data to construct
county measures of the structural covariates identified in their work. Meas-
ures for the following variables were drawn from the U.S. Counties 1996
cd-rom: population, population density, percentage black, percentage of
families below poverty, percentage of the civilian labor force that is unem-
ployed, median family income, Gini index of family inequality, percentage
of the population aged 15–29, percentage of males aged 15 and over who
are divorced, and the percentage of family households with own children
present with a spouse absent. This source combines information from the
1980 and 1990 Census summary tape files (STF1 and STF3).

Following Land et al. (1990), we performed principal components
analysis to simplify the covariate space. The results yielded two
components: a population structure component reflecting population size
and population density, and a resource deprivationyaffluence component,
based on measures of percentage black, percentage of families below pov-
erty, median family income, Gini index of family income inequality, and the
percentage of family households with own children present with a spouse
absent. Two composite indexes were constructed based on the loadings from
these analyses.

We also consider some additional variables (described along with the
results) to interpret the observed spatial clustering of homicide. The sources
for these variables are the U.S. Counties 1996 and the Regional Economic
Information Systems (REIS) cd-roms.

4. APPLICATION OF ESDA TO THE ST. LOUIS REGION

4.1. Preliminary Concerns: Temporal Aggregation

Although we previously justified our selection of a spatial region
around the St. Louis metropolitan area and noted the broader time period
10In preliminary explorations, we have aggregated NCHS homicide data by both decendents’

county of occurrence and residence for 1980 in the St. Louis spatial region. There is substan-
tial overlap: 80% of all homicides in 1980 occurred in the decendent’s county of residence.
Further, we compared our NCHS county of residence data to the FBI’s SHR data, aggre-
gated by county of occurrence, for the St. Louis sample for the years 1979 to 1994. As
expected, the NCHS counts are consistently higher than the SHR homicide counts. The two
series nevertheless trend very similarly [see Fig. 3 of Riedel (1998) for the same national
comparison over time]. In subsequent analyses, we plan to examine in greater detail the
consequences of using place of occurrence vs. place of residence in the analysis of spatial
patterning of homicide.



Messner et al.432

under consideration (i.e., 1979–1995), we have not yet identified the specific
time intervals to be used in our analysis of county-level homicide rates. At
one extreme, we could use the finest temporal resolution possible—annual
rates for each of the 17 years between 1979 and 1995. At the other extreme,
we could use the crudest temporal aggregation by lumping homicides across
all years into a single homicide rate for the 17-year period.

Aggregating homicides for the entire 17-year period has a number of
distinct advantages, the most notable of which are that it provides the great-
est degree of stability in the county-level homicide rates and it summarizes
the phenomenon, homicide, in the most parsimonious manner. This
approach, however, is tenable only if the causal processes in the time series
are in an equilibrium state. That is, homicide and its causal factors must be
in a stable relationship throughout the time series. This does not imply that
the time series of homicide rates is stationary, i.e., not trending up or down,
but rather that the relationship between homicide and its antecedents is
constant. In the language of regression analysis, the same values for the
regression coefficients must hold throughout the time series (Coleman 1968,
p. 444).

We assess the assumption of temporal equilibrium in two ways. First,
we examine trending in the homicide rate time series. Figure 2 plots annual
homicide rates aggregated over the entire St. Louis-area sample of counties.
In general, three temporal regimes emerge: (1) a period of decreasing homi-
cide rates (1979–1984), (2) a period of relative stability (1984–1988), and
(3) a period of increasing homicide rates (1988–1993).

Fig. 2. Annual homicide rates: St. Louis sample.
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Despite the evidence of distinct temporal regimes for the entire St.
Louis region, it is possible that St. Louis (City) is dominating the aggregate
rates for the region. To assess this possibility, we calculate the time series
for St. Louis City and remaining counties separately. These are shown in
Fig. 3.

Figure 3a is the time series for St. Louis City. It is nearly identical to
the aggregate time series in Fig. 2, again revealing three temporal regimes.

Fig. 3. Annual homicide rates in St. Louis region.
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Figure 3b is the time series for the remaining counties in the St. Louis spatial
region. It too is indicative of three temporal regimes, although the effect of
the decline in 1995 is more severe than in St. Louis City. Interestingly, the
temporal regimes outside of St. Louis City appear to lag behind city regimes
by a year or two—this would be expected if homicide trends diffused out of
the city.

The second manner through which we investigate an assumption of
temporal equilibrium is by examination of annual global Moran’s I
statistics.11 Moran’s I is the most widely known measure of spatial clustering
(Cliff and Ord, 1973; Cressie, 1993; Haining, 1990; Upton and Fingelton,
1985). It is a summary, or global, indication of spatial autocorrelation.

The distinguishing characteristic of measures for spatial autocorre-
lation is that the spatial arrangement of the observations is taken into
account explicitly. This is done through the use of the spatial weights
matrix, the elements of which are nonzero for pairs of observations that are
assumed to correlate (‘‘neighbors’’) and zero for others. By convention, the
diagonal elements are set to zero (no unit is a neighbor to itself). The defi-
nition of ‘‘neighbor’’ depends on the context and the purpose of the analysis,
and an almost-infinite number of possibilities can be considered (for an
extensive discussion see Cliff and Ord, 1980; Upton and Fingelton, 1985;
Haining, 1990). In our analysis, the focus is on diffusion and hence we use
the general notion of contiguity to define neighbors. This is operationalized
by taking either counties with a common boundary as neighbors (first order
contiguity) or counties whose centroids (geographical center of gravity) are
within a given distance of each other (distance-based contiguity). Since our
primary purpose is to establish whether or not spatial randomness is present
and how spatial diffusion may be reflected in the pattern of homicides, the
choice of a simple contiguity definition is appropriate (other studies may
consider metrics such as social distance for example). When implementing
a distance-based contiguity, we are implicitly assuming a lack of directional
bias in the diffusion process. Also, in order to make sure that every county
is connected with at least one other county, we chose the max–min nearest
neighbor distance as the cutoff criterion. For the counties in our sample,
this distance is 31.7 mi, which ensures that no ‘‘islands’’ are present in the
sample.

Table I reports the annual global Moran’s I statistics for the St. Louis
sample, 1979–1995. Table IA reports coefficients based on annual homicide
rates; Table IB reports coefficients for selected temporal averages. Moran’s
I has an expected value of − [1y(nA1)]. Note that this expectation

11All computations of spatial statistics were done with SpaceStat Version 1.90 and the
DynESDA extension for ArcView.
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Table I. Global Moran’s I Statistics :
Homicide Rates (Empirical Pseudo-
Significance Based on 999 Random

Permutations)a

Year I statistic

A. Annual homicide rate

1979 0.100*
1980 0.070
1981 0.017
1982 0.149*
1983 0.167*
1984 0.030
1985 0.028
1986 0.119*
1987 0.066
1988 0.094
1989 0.113*
1990 0.035
1991 0.082
1992 0.041
1993 0.024
1994 0.087
1995 0.080

B. Average homicide rates

1979–1995 0.134*
1988–1993 0.141*
1984–1988 0.125*
1979–1984 0.118*

aYears in Panel B represent the full period
(1979–1995), the period of increasing
homicide rates (1988–1993), the period
of stable homicide rates (1984–1988),
and the period of decreasing homicide
rates (1979–1984).

*pY0.05 (two-tailed tests).

approaches zero, the expectation for an ordinary correlation coefficient, as
the number of areal units becomes large. Values of I that exceed −[1y(nA1)]
indicate positive spatial autocorrelation in which values of xi tend to be
similar to neighboring values; values of I below the expectation indicate
negative spatial autocorrelation. The statistical evidence in this table again
casts doubt on an assumption of temporal equilibrium as the annual spatial
dependence of counties is highly unstable. The I values range between 0.17
and 0.02 and they are erratic throughout the study period. In addition, tests
of statistical significance reject evidence of spatial association in 12 of the
17 years.
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The information revealed in the figures and in Table I challenges the
notion of temporal equilibrium over the entire study period. Alternatively,
we could move to the other extreme and rely on annual rates. The principal
advantage of this approach lies in its maximization of temporal detail. The
annual instability evidenced in Table IA (probably reflecting instability in
rates for counties with small populations), however, cautions against the
spatial analysis of annual homicide rates. This instability could be overcome
by aggregating or averaging over several years, such as 3-year periods or 3-
year moving averages. Alternatively, one could employ the temporal regimes
revealed in the figures. We choose to examine temporal regimes because (1)
the regimes represent substantively interesting periods of homicide decline,
stationarity, and increase; and (2) this choice satisfies Occam’s Razor, that
is, it is more parsimonious than 3-year aggregations or moving averages.
To simplify the application of ESDA, our subsequent analyses in this paper
concentrate on two of the periods, i.e., the periods of stability, 1984–1988,
and increase, 1988–1993.12 Note that significant spatial autocorrelation is
observed in each of the three periods, as well as for the entire period (see
Table IB).

4.2. Describing the Distribution of Homicide Rates

The first graphic evidence of the basic geographic distribution of homi-
cide rates, in and around the St. Louis MSA, is presented in Linked View
(Fig. 4). For both the stable (1984–1988) and the increasing (1988–1993)
homicide periods the Linked View presents two types of information: (1)
box maps which show the location (quartile) of every county within the
overall distribution of homicide rates for the period and (2) box plots which
show graphically the variation of homicide rates (based on the interquartile
range) during the period. In both the maps and the plots ‘‘outlier’’ counties
are also identified (yellow). Outliers are those counties with homicide rates
for the respective period that fall significantly above the upper boundary of
the interquartile range.13

12The years 1984 and 1988 constitute rather clear turning points. However, it is difficult to
determine whether these years are best regarded as the end of one regime or the beginning
of another. Rather than make an arbitrary decision to locate the year in one or the other
regime, we allow the regimes to overlap for these years. This procedure should introduce a
conservative bias in the search for changes in spatial patterns over time.

13A box map is a quartile map in which the outliers are highlighted. The box map and the box
plot are dynamically linked in the sense that when observations are highlighted (clicked with
a mouse on the screen) in one view, the corresponding observations in the other views are
highlighted as well. A box map is a simple device to detect ‘‘special’’ observations in an
ESDA approach (Anselin, 1999). To be considered an ‘‘outlier’’ a county’s homicide rate
must fall above the upper boundary of the interquartile range by an amount that is at least
one and one-half times the value of the interquartile range.
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Fig. 4. Box maps and box plots of average homicide rates, 1984–1988 (left) and 1988–1993
(right) (yellow pointsycounties are high outliers).

Visual inspection of the box map for the period of stable homicide rates
reveals that the counties tend to fall into two general regimes, defined by a
diagonal line running from the upper left of the region to the lower right.
Those counties falling below the diagonal show generally higher homicide
rates (third and fourth quartiles), while those counties above the diagonal
are characterized by lower homicide rates (first and second quartiles).
Between 1984 and 1988, only two areas had homicide rates so extremely
high that they can be considered outliers—St. Louis City and St. Clair
County, IL. These basic patterns in the geographic distribution of homicide
might be viewed as evidence of a spatial clustering of homicide rates; how-
ever, as demonstrated below, that conclusion would be premature.

The geographic distribution of homicide appears to have shifted
between the periods of stable and those of increasing homicide. The ‘‘south-
west vs. northeast’’ division deteriorates somewhat over time, with more
‘‘high homicide’’ counties becoming evident in the northeast quadrant.
Indeed, an especially salient characteristic of the box map for the latter
(increasing) period is the emergence of four additional outliers—Reynolds
County, MO; Bond County, IL; Macon County, IL; and Cumberland
County, IL. However, the substantive importance of these four new outliers
should be interpreted cautiously. First, their homicide rates are far more
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modest than those for the two outliers that appear in both box maps (St.
Louis City and St. Clair County, IL). Second, there is some evidence to
suggest that three of the new outliers (all except Macon County, IL) may
have achieved that status because of variance instability.14

As might be expected, the variation in homicide rates grew larger dur-
ing the period of increasing homicide. However, inspection of the box plots
for both periods reveals that this was due entirely to the influence of the
four new outliers that emerged during the later period. In fact, when the
outliers in both plots are excluded from consideration, we find that the
variance in homicide rates actually shrank as overall homicide rates in the
region increased—an unexpected outcome. The ‘‘compression’’ of homicide
rates among the nonoutlier counties produced a considerably smaller inter-
quartile range in 1988–1993 than was observed in 1984–1988. To some
extent, this compression may be partially responsible for the emergence of
new outliers, as the threshold for ‘‘outlier status’’ grew more modest.

The box maps and box plots are useful for describing the general
characteristics of the distribution of homicide throughout the 78-county
area under study and for revealing specific areas with exceptionally high
levels of homicide. However, they are limited in their ability to identify any
significant spatial clustering of homicide rates (high or low). For that pur-
pose we turn to a consideration of a global statistic for spatial autocorrel-
ation (Moran’s I ), its local counterpart (Local Moran), and its
decomposition into four types of spatial association (Moran scatterplot and
Moran scatterplot map).15

4.3. The Spatial Autocorrelation of Homicide

Critical to assessing the presence or degree of spatial clustering, but
missing from the evidence presented in Linked View 1, is a systematic con-
sideration of homicide levels in neighboring counties. That is, the classifi-
cation for each county in the box maps, by quartiles, is based only on the
level of homicide in that county and its location in the overall distribution
of homicide for all counties combined. In contrast, measures of spatial auto-
correlation explicitly take into account the spatial arrangement of the

14For these three counties, the large increases in homicide rates are based on relatively small
changes in the count of homicides between periods: Cumberland County, IL (counts of 1
and 7 and rates of 1.85 and 10.86), Bond County, IL (counts of 2 and 9 and rates of 2.58
and 9.92), and Reynolds County, MO (counts of 2 and 5 and rates of 5.86 and 12.58). In
contrast, the increase in homicide rates for Macon County (from 6.04 to 9.05) reflects a
substantial jump in homicide counts (from 37 to 64).

15An extensive discussion of the graphical devices and terminology used in ESDA is given by
Anselin (1995, 1996, 1999).
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values. A global measure of spatial autocorrelation, such as the Moran’s I
statistics reported in Table I, provides an indication of the extent to which
the spatial pattern of the whole data set (hence, ‘‘global’’) is compatible
with a null hypothesis of randomness. Local indicators of spatial association
[or LISA; an acronym coined by Anselin (1995)] assess a null hypothesis of
spatial randomness by comparing the values in each specific location with
values in neighboring locations.16 Several LISA statistics can be considered,
but a local version of Moran’s I is particularly useful in that it allows for
the decomposition of the pattern of spatial association into four categories,
corresponding with four quadrants in the Moran scatterplot (Anselin, 1996).
Two of these categories, imply positive spatial association, namely, when an
above-average value in a location is surounded by neighbors whose values
are above average (high–high) or when a below-average value is surrounded
by neighbors with below average values (low–low). In contrast, negative
spatial association is implied when a high (above average) value is sur-
rounded by low neighbors, and vice versa. Both of these instances are lab-
eled spatial outliers when the matching LISA statistics are significant. Each
of the quadrants matches a different color in the so-called Moran scatterplot
map, a map that shows both the locations with significant LISA statistics
(i.e., a rejection of the null hypothesis of spatial randomness) and the cate-
gory of spatial association.

The classification into four categories of spatial association is illus-
trated by the Moran scatterplots in Linked View 2 (Fig. 5). The horizontal
axis is expressed in standard deviation units for the homicide rate. The verti-
cal axis represents the standardized spatial weighted average (average of the
neighbors) for the homicide rates. The slope of the linear regression
smoother through the scatterplot is the Moran’s I coefficient, as shown by
Anselin (1996). This allows for an easy interpretation of changes in global
spatial association (the slope) as well as a focus on local spatial association
(the quadrant). A county’s location among these four quadrants determines
whether it is classified as ‘‘high–high,’’ ‘‘low–low,’’ ‘‘high–low,’’ or ‘‘low–
low’’ in the Moran scatterplot map. The local Moran’s I statistic is used
to determine whether the location of the county in the scatterplot map is
statistically significant, that is, whether the autocorrelation is greater than
would be expected by chance.17 The scatterplots presented in Linked View
2 (Fig. 5) also report the Global Moran’s I statistic described above as a
measure of spatial autocorrelation among all counties in the analysis.

16The local Moran is defined as IiG(ziym2) ∑ j wij zj , with, m2G∑i z2
i ; observations zi and zj are

in mean-deviation form, and the summation over j is such that only neighboring values are
included.

17As implemented in the SpaceStat software, the significance of the Local Moran statistic is
determined by generating a reference distribution using 999 random permutations.
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Fig. 5. Moran scatterplot maps and Moran scatterplots of average homicide rates for 1984–
1988 (top) and 1988–1993 (bottom). Yellow points are two outliers (St. Louis City and St.
Clair County). The red line and global Moran in the scatterplot represent their removal.

Beginning with the Moran scatterplot map for the period of stable
homicide, we find evidence of spatial grouping. A cluster of counties with
high homicide rates, as well as neighbors with high homicide rates, is appar-
ent in the area around St. Louis City. This ‘‘urban core’’ of high homicide
is also implicated in the three surrounding counties with low homicide rates,
but high-homicide neighbors. These are suburban residential counties near
the city of St. Louis. In addition, two clusters of low-homicide counties,
surrounded by other counties with low homicide rates, can be seen in the
northern and eastern fringes of the region. Consistent with a possible dif-
fusion process, a distinct ‘‘hot spot’’ appears in the data centered around
the St. Louis urban core, while ‘‘cool spots’’ are also detected in areas geo-
graphically removed from St. Louis.18

Turning to the subsequent period during which homicide rates
increased throughout the region, the same general profile of spatial clus-
tering appears in the Moran scatterplot map. However, one notable differ-
ence emerges during the later period—involving Morgan and Sangamon
18The research on ‘‘hot spots’’ typically involves ecological areas much smaller in scale than

counties, such as city blocks or ‘‘places’’ (Roncek and Maier, 1991; Sherman et al., 1989).
For linguistic convenience, we use the terms ‘‘hot spots’’ and ‘‘cool spots’’ to refer to county
clusters corresponding to the high–high and low–low quadrants of the Moran scatterplot,
but we do not imply that the processes underlying spatial clustering are analogous for ecologi-
cal units at different levels of aggregation.
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Counties in the upper tier of the region. During the earlier period, Macon
County, IL, had a high homicide rate and was surrounded by counties with
low homicide rates. Its neighbor to the west, Sangamon County, did not
have a statistically significant local Moran’s I. In turn, Sangamon County’s
neighbor, Morgan County, was part of a cluster of counties with low homi-
cide rates, with neighbors that shared that status. By the later time period,
however, both Sangamon and Morgan Counties made the transition to
‘‘high-homicide’’ counties, surrounded by ‘‘low-homicide’’ counties. In con-
junction with Macon County, they now formed a string of counties, suggest-
ing the possible east-to-west diffusion of homicide out of Macon County,
as homicide in general increased throughout the region.

A final piece of evidence about the spatial clustering of homicide can
be gleaned from the Moran scatterplots. The Global Moran’s I for both
time periods, 0.1244 and 0.1396, respectively, are significant at the 0.05 level
and suggest positive clustering such that counties with high homicide rates
tend to have neighbors that also have high rates or, conversely, counties
with low homicide rates ‘‘cluster together’’ with other low-homicide count-
ies. Furthermore, the scatterplots show that this overall clustering is not due
simply to the disproportionate influence of the two, neighboring, counties
with the highest homicide rates in the region—St. Louis City and St. Clair
County. In fact, the degree of spatial clustering increases when those two
counties are omitted from the analysis, to 0.1701 and 0.1806 for the earlier
and later time periods, respectively.

4.4. Searching for Covariates

In our previous discussion of the rationale for using ESDA, we
acknowledged the importance of linking univariate patterns in the spatial
distribution of homicide to global andyor local patterns of association with
covariates. We turn now to this objective.

Our initial selection of covariates of homicide follows the lead of Land
et al. (1990). In their highly influential study, they report that reasonably
invariant relationships with homicide rates can be observed for samples of
cities, metropolitan areas, and states once multicollinearity is reduced
through the construction of principal component indexes. The ESDA
described in this section reports results for the most powerful predictor of
homicide in Land et al.’s model—the resource deprivationyaffluence compo-
nent (RDAC). We examine spatial patterns and bivariate relationships with
RDAC for the stable (1984–1988) and increasing (1988–1993) temporal
homicide regimes.

The top two panels in Linked View 3 (Fig. 6) display the Moran scat-
terplot map for RDAC (measured in 1985) and the Moran scatterplot map
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Fig. 6. Moran scatterplot map of resource deprivationyaffluence component (RDAC), 1985
(top). Moran scatterplot map of average homicide rates, 1984–1988 (bottom). Bivariate scat-
terplot of the effect of RDAC on homicide. Yellow points refer to urban counties and the red
line and slope in the scatterplot represent their removal.

for the averaged homicide rates for the stable 1984–1988 period. The bot-
tom panel presents the bivariate scatterplot of homicide on RDAC. Linked
View 4 (Fig. 7) replicates the maps and scatterplot for the period of increas-
ing homicide (1988–1993) with RDAC measured in 1990.

Beginning with the stable period (Linked View 3; Fig. 6), one obser-
vation is immediately evident in the two maps: there is little relationship
between RDAC and homicide in the local Moran statistic. In other words,
local dependencies in homicide are spatially distinct from local dependencies
in RDAC. Resource deprivation is clustered among counties located in the
southwest quadrant (located in the Ozark mountain subregion) of our spa-
tial region in both periods, while homicide clusters are consistently situated
north of this quadrant.

Turning to the scatterplot, the blue line represents the slope of the
relationship when all counties are considered. The slope suggests a moder-
ately strong positive relationship between RDAC and homicide rates, a
finding which is consistent with past research using other units of analysis.
However, the scatterplot also suggests that selected counties may be exerting
strong leverage on the observed relationship. The dynamic linking capabili-
ties of ESDA allows us to highlight and identify the two outliers on the
scatterplot—St. Louis City and St. Clair County (which contains East St.
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Fig. 7. Moran scatterplot map of resource deprivationyaffluence component (RDAC), 1990
(top). Moran scatterplot map of average homicide rates, 1988–1993 (bottom). Bivariate scat-
terplot of the effect of RDAC on homicide. Yellow points refer to urban counties and the red
line and slope in the scatterplot represent their removal.

Louis). These initial observations suggest that the relationship between
homicide and RDAC might differ appreciably for urban and nonurban
counties. Once again using the dynamic linking capabilities of ESDA, we
can select the five counties containing cities with populations of 50,000 or
more (Boone, Macon, Sangamon, St. Clair, and St. Louis Counties), along
with St. Louis City. These cases are depicted in yellow in the scatterplot.
The red line in the scatterplot represents the slope of the relationship
between homicide rates and RDAC when these highlighted cases (the urban
areas) are removed. The results reveal a very flat slope, indicating that the
overall assocation between RDAC and homicide rates is due almost entirely
to the influence of the urban areas. Analogous results are obtained in the
analysis of the period of increasing homicide (Linked View 4; Fig. 7).

Our investigation of other significant predictors in the Land et al.
(1990) baseline model yields nearly identical results to those obtained from
the bivariate regression and spatial covariation of homicide with these pre-
dictors. Moreover, multivariate analyses (not shown) confirm these
conclusions: the statistically significant effects of covariates of homicide in
county-level analyses are entirely attributable to influential cases represented
by urban centers. This raises the question as to whether there are alternative
covariates of homicide in non-urban counties, or if the level of homicide
(rates) is so low (and perhaps unstable) outside of urban areas that it is
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random with respect to county-level covariates. Further analyses reported
below point toward alternative indicators that are significantly related to
homicide rates in rural counties.

4.5. Barriers to Diffusion

Thus far, we have focused on evidence of the diffusion of homicides to
surrounding areas, and possible covariates. It is also instructive to explore
reasons for the apparent failure of homicide to ‘‘spread’’ to geographically
proximate areas. Are there features of counties that effectively serve as bar-
riers to diffusion? To address this question, we have searched for variables
that distinguish ‘‘barrier’’ counties in the spatial area, i.e., those counties
that are proximate to the two apparent ‘‘hot spots’’—the MaconySanga-
monyMorgan area in the Northeastern segment and the St. Louis urban
core.

There are no cities in the barrier counties for the MaconySangamony
Morgan cluster, which suggests that aspects of rural social structure might
distinguish these counties from others. To search for relevant variables, we
have examined correlations between homicide rates and a wide variety of
social and economic variables for the nonurban counties in the sample (the
six counties that contain cities were excluded). Interestingly, rural homicide
is strongly correlated (r approximatelyG−0.30) with a measure of agricul-
tural activity or ruralness: cash earned from the sale of crops. This corre-
lation is stronger than those involving the predictors from the model of
Land et al. (1990). In addition, the variable for cash earned from crops
exhibits a statistically significant negative effect on homicide rates for the
sample of nonurban counties in a multiple regression with the controls for
the variables in Land et al.’s model.

Linked View 5 (Fig. 8) contains a Moran scatterplot map of homicide
rates for the increasing period and a histogram representing the variable
cash from crops (both were averaged for the years 1988 to 1993). By
dynamically linking these views we are able to highlight the counties sur-
rounding Macon, Sangamon, and Morgan counties and see instantaneously
where they fall on the cash from crops measure. As shown in Linked View
5 (Fig. 8), the barrier counties tend to fall at the upper end of the cash from
crops distribution. It appears that highly agricultural or rural counties act
as barriers to the diffusion of violence. In contrast, these barrier counties
fall directly in the middle of the distribution for RDAC (not shown). These
results, in combination with the earlier analyses of the conventional struc-
tural covariates of homicide, suggest that the predictors of rural and urban
homicide may be different.

Shifting attention to the St. Louis urban core, it sees likely that the
apparent barrier counties (the three ‘‘low–high’’ counties near St. Louis in
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Fig. 8. Moran scatterplot map of the average homicide rate, 1988–1993. Histogram of average
cash earned from the sale of crops as a percentage of all cash earned, 1988–1993. Yellow
‘‘barrier’’ counties have high earnings from the sale of crops.

Linked View 2; Fig. 5) are primarily affluent suburbs. This hypothesis is
confirmed when a Moran scatterplot map of homicide rates in the increasing
period is linked with the Histogram for the RDAC (Linked View 6; Fig. 9).
The results are striking. The counties along the western fringe of the St.
Louis MSA are among the most affluent (least disadvantaged) in the area.
At the urban core, affluent suburbs appear to act as barriers to the diffusion
of violence. Given the economic well-being of these western MSA counties,
we suggest that if diffusion from St. Louis were to occur in the future, it
would most likely occur in the eastern part of the St. Louis MSA.

5. CONCLUSION

Our application of ESDA to county-level homicides in the St. Louis
area leads to several substantively important conclusions. First, the hypoth-
esis of spatial randomness is clearly rejected. Statistically significant spatial
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Fig. 9. Moran scatterplot map of average homicide rates, 1988–1993. Histogram of resource
deprivationyaffluence component, 1990. Yellow ‘‘barrier’’ counties have low resource
deprivation.

clusters are observed in both periods under investigation, one of stable
homicide rates and one of increasing homicide rates for the region as a
whole. These results provide justification for further consideration of local
patterns of spatial autocorrelation.

Second, some of the observed local patterns of autocorrelation are
suggestive of possible diffusion processes. The comparative static analyses
reveal clustering—‘‘hot spots’’ and ‘‘cold spots’’—that would be expected
as a result of a contagious diffusion process in the past. In both periods,
high homicide rate counties are clustered around the St. Louis urban core,
while clusters of low homicide rates appear in territories removed from this
core. The dynamic comparison across the two periods also provides evi-
dence consistent with a diffusion process. A new high homicide rate cluster
appears in the second period, suggesting the possible spread of homicide
from Macon County to two counties to the west. This pattern is suggestive
of a hierarchical diffusion process wherein smaller urban centers (Decatur
and Springfield) serve as ‘‘nodes’’ for the spread of homicide from major
metropolitan centers. We have regarded St. Louis as the urban core of the
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spatial area, but the DecaturySpringfield spatial subregime could conceiv-
ably operate as a node connected to another nearby major metropolitan
area—Chicago. Our analyses cannot determine which of these processes is
at work, but they both warrant further inquiry.

Third, our analyses reveal that the covariates of homicide rates that
have emerged in previous research based on other units of analysis and
geographic areas do not offer a satisfactory explanation of the clustering of
homicide in the St. Louis region. The spatial distributions for these covari-
ates do not mirror those for homicide rates in any systematic way. In
addition, the explanatory power of these conventional covariates for the
region at large is due almost entirely to the effects among the urban count-
ies. These results are consistent with previous county-level studies indicating
that the determinants of homicide vary in some important respects across
different kinds of ecological units (cf. Kposowa and Breault, 1993; Kpo-
sowa et al., 1995).

Finally, our analyses point to possible barriers to the diffusion of homi-
cide. Those counties surrounding the Macon County ‘‘hot spot’’ that did
not exhibit increased homicides are characterized as highly rural or agricul-
tural. The western barrier counties for the St. Louis urban core also exhibit
a distinctive socioeconomic makeup: these are among the most affluent
(least deprived) counties in the region.

In closing, we remind the reader that ESDA is a starting point for
analysis. As the label states, it represents the exploratory phase of research.
If one wishes to entertain the notion of spatial diffusion, it must be shown
that the distribution is nonrandom. We have done this. However, spatial
diffusion is not the only mechanism through which spatial nonrandomness
occurs. Rigorous testing of diffusion processes requires identification of
specific mechanisms and formal modeling in a spatial multivariate
regression approach. The spatial diffusion of homicide is based on an argu-
ment that the observed rates of homicide are systematically related to rates
of homicide in neighboring areas. Alternatively, spatial nonrandomness
could be due to a spatial ‘‘error’’ process (where the important unmeasured
predictors of homicide account for the observed clustering) or spatial het-
erogeneity (where different causal processes are thought to operate in subre-
gions of the geography, e.g., urban versus rural areas, that produce similar
levels of homicide in those areas). Indeed, spatial heterogeneity and spatial
dependence can be observationally equivalent and detection of one must be
tested while the other is controlled for (Anselin, 1988; Anselin and Bera,
1998). Nevertheless, ESDA is an extremely useful set of inductive techniques
for pursuing an hypothesis of diffusion. By combining graphical and statisti-
cal tools in an interactive computing environment, researchers can discover
suggestive spatial patterns warranting further empirical investigation and
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theoretical interpretation. Our analyses illustrate how this inductive
approach can be profitably applied to enhance understanding of the
phenomenon of homicide.
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