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Preface

Spatial ideas can make substantial contributions to social science research. This
book provides a self-contained introduction for social scientists of how the analysis of
spatial dependence can be integrated into a regression framework. We intend to fill a niche,
making this book accessible to a wide range of readers interested in the role of space in
social science applications. Although many exhaustive surveys of spatial statistics exist,
most of these are very advanced and presume that readers have a thorough knowledge of
advanced statistics and probability theory (Getis &
Boots 1978, Ripley 1981, Ripley 1988, Cressie 1993, Haining 2003, Banerjee, Carlin &
Gelfand 2004, Schabenberger & Gotway 2005). Most of these surveys are also oriented to
topics and applications relevant to the natural sciences that often are unfamiliar to social
scientists. We assume only that the reader is familiar with the classical regression model as
widely employed in social science research and is interested in the spatial dependence that
may characterize their data. In a few places we rely on matrix representations, but these
are explained in considerable detail in non-mathematical language. We use the widely and
freely available R computing platform (R Development Core Team 2004) to show exactly
how to implement these methods and provide some code clips to illustrate our examples.
Familiarity with R at the level of Dalgaard (2002) will be useful. Other programs and
approaches are also available for the analysis of spatial data, but we do not employ these in
the text, although we provide brief details on some alternatives in an appendix.

This book would not have seen the light of day without support for its authors.
Foremost, we thank our families for putting up with our absences during stressful times.
We also thank Joan Esteban, Director of the Institute for Economic Analysis, Barcelona,
Spain. Joan gave us a warm, generous welcome and enormous support as we developed the
first draft of this long delayed project. Michael Ward is grateful for support he received
from Adrian Raftery, the Director of the Center for Statistics and the Social Sciences
(CSSS), which made this visit possible. Ward also received support from David Hodge,
one-time Dean of the College of Arts and Sciences at UW, now president of Miami
University, and from the chair of the Political Science Department at the University of
Washington, Steve Majeski. Kristian Skrede Gleditsch received support from the National
Science Foundation and a Gaspar de Portolà travel grant from the Government of
Catalonia and the University of California.

Many current and former colleagues at UW, UCSD, Essex and elsewhere have both
informed and inspired our interest in dependent data. We are also grateful for insights and
helpful discussions with Dennis L. Ward, Idean Salehyan, Kristin M. Bakke, Kyle
Beardsley, Shauna Fisher, Xun Cao, John Ahlquist, Aseem Prakash, Erik Wibbels, Anton
Westveld III, Nathaniel Beck, Roger Bivand, Tse-Min Lin, Michael E. Shin, Andrea
Ruggeri, Michael Manger, James P. LeSage, and Christopher Ward. Michael Ward thanks
two of his previous neighbors for their influence on his initial and continuing interest in
geography: Andrew Kirby and subsequently John V. O’Loughlin occupied the office across
from him in the Institute of Behavioral Science at the University of Colorado. Ward
promises to return several of their books upon the completion of this manuscript. Kristian
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He is a patient man.

Barcelona, Seattle, San Diego, Oslo, & Colchester Michael D. Ward
June 15, 2007 Kristian Skrede Gleditsch



CHAPTER 1

Introduction

1. Interaction and Social Science

Social scientists are interested in situations in which various types of
agents—individuals, political parties, groups, countries—interact with one another. In
many cases, the outcomes or incentives for actions of individual actors do not depend solely
on the attributes of the particular individual, but the structure of the system, their
position within it, and their interactions with other individuals. Even something as prosaic
as the common flu has a social component, since it is spread through social interaction. If
we want to predict the likelihood that a particular individual will come down with a
rhinovirus we would look at whether something has “been going around” lately, and
whether the individual has been in contact with others who have become ill with this
disease. Some diseases are spread via interaction, where infected individuals transmit the
disease through contact with others. Clearly, different types of interaction patterns can
give rise to different disease dynamics. Although demonstrably false, the spread of the HIV
retrovirus to the United States is often claimed to have originated from an index case of a
single Canadian airline attendant in the late 1970s (Watts 2003).

Oddly, the rôle of interactions and their structures is almost completely absent from
most empirical analysis in the social sciences. Consider, for example, the case of voter
turnout. Differences in turnout have typically been explained using individual
characteristics, such as higher education, believed to be important for political behavior.
However, interaction and ties to other individuals can be as important as personal
characteristics. For example, so-called “get-out-the-vote” phone calls increase voting
turnout by about six percentage points (± 3) on average (Imai 2005). Similarly, linkages to
organizations such as churches and labor unions are also known to increase voter turnout.
Baybeck & Huckfeldt (2002) show that even in disperse networks, individuals that are
distant from one another are less likely to interact on a frequent basis. Such studies are the
exception, not the rule; most studies of voter turnout still assume that all voters make
independent decisions.

Clearly, treating observations as unrelated would be patently absurd for the flu
example. Perhaps some people have weaker immune systems and are more likely to fall sick
during an epidemic. However, we would not try to predict an individual’s risk of the flu
from their own attributes alone, independent of whether other individuals are infected. For
example, parents are rarely “similar” to their children in terms of income, hours slept, and
smoking. Yet if one is affected, the other is typically also at risk. The social relations
model grew out of an interest by psychologists to separate the independent and interactive

1



2 1. INTRODUCTION

effects of groups versus individuals, and it provides one attempt to model such
dependencies (see, e.g. Kenny 1981, Malloy & Kenny 1986).

In this monograph, we examine how insights from spatial analysis can help
researchers take dependence between observations into account and deal with spatially
clustered phenomena. In particular, we focus on two, important regression models with
spatially dependent observations. The first of these concerns situations in which there is a
spatially lagged dependent variable. The second focuses on spatially correlated errors. We
recognize that there is a much larger set of interesting spatial modelling perspectives. This
monograph is not intended to survey these, but rather serves to introduce models with
spatially lagged dependent variables and those with spatially correlated error terms. Many
empirical undertakings in social science may benefit from these approaches that have until
very recently been widely ignored in the empirical social science literature. These types of
models allow us to examine the impact that one observation has on other, proximate
observations. We believe this is important not only from first principles, but also from the
simple fact that many social phenomena are spatially “clustered.” There are many forms of
spatially organized data, ranging from geo-located individual locations for observations to
regional data that are attributed to some geographical area. The latter are often called
areal or lattice data, while the former are known as point data. In this monograph, we
concentrate on regional data, which typically deal with such units as counties, states,
provinces, and countries.1

Examples of spatially clustered phenomena are widespread in the social science.
Regional voting clusters are often thought to be important in American political behavior.
Political cleavages often overlap with economic and ethnic cleavages. As such, models of
voter turnout may need to take into account the spatial clustering of overlapping cleavages
(West 2005). Similar examples can be found from studies in comparative politics, sociology,
and economics. For example, studies of the impact of the various policy choices made by
central banks have been examined for their independence from the central governments as
well as the preferences of the central bankers themselves. It is widely thought that central
banks are constrained by a variety of local contexts apart from how independent they are
from the national authorities. Thus, even if they are independent of local authorities, are
central bank policies independent of each other (Franzese 1999, Adolph 2004)? Murdoch,
Sandler & Sargent (1997) examine interdependent decision making in the voluntary and
nonvoluntary aspects of behavior regarding emissions of sulphur dioxide (SO2) and nitrous
oxide (NO) in Europe during the 1980s. As pollutants are spatially dispersed without
regard to national boundaries, spatial analysis techniques will help to highlight the
spillover effects pollution as well as the interdependence of compliance issues. Inequality
and poverty are thought to be intertwined in cross-national studies. The most skewed
wealth and income distributions are often in the poorest countries. Recent work has shown
that corruption is often the consequence, as well as plausible cause, of poverty. However, it
turns out that income inequality may increase the level of corruption, even more so than
poverty. It may be that the distributions of wealth and corruption share a spatial

1There are very few applications of point data in the social sciences, as yet. A recent exception is Cho &
Gimpel (2007).



2. DEMOCRACY AROUND THE WORLD 3

clustering that complicates this effect. Spatial analysis can help untangle this conundrum.
Recent work along these lines includes You & Khagram (2005). Finally, organizational
forms may also spread in much the same way: policy emulation. Holmes (2006) addresses
the contagion of unionism with spatial models.

In short, there are myriad studies across the gamut of the social sciences that
employ data that are actually organized on a spatial template, whether the units are
counties, cities, states, countries, or firms. It often turns out that the characteristics of
these units are highly clustered in particular spatial regions. In many of these applications
it is plausible to assume that there may be dependencies across the observations. In
practice this clustering is generally ignored or treated as a nuisance. Ignoring these
dependencies imposes a substantial price on our ability to generate meaningful inferences
about the processes we study. Spatial analysis provides one way of reducing that price and
taking advantage of the information we have about how social processes are interconnected.
We turn next to a simple example of how this works in an important area of social science,
namely the study of the diffusion of democratic institutions.

2. Democracy Around the World

To motivate our discussion, we use a simple example with data where observations
are unlikely to be independent of one another. Social scientists have long been interested in
possible explanations for why some countries are democracies and others not. An early and
influential contribution by Lipset (1959) suggested that there were social requisites for
democratic rule. One of these requisites was high levels of average income; Lipset noted
that “. . . the average wealth . . . is much higher for the more democratic countries” (page
75). This argument—which has served as a cornerstone of comparative analysis for over
four decades—suggested that societies with higher average income were more likely to have
democratic institutions. Table 1.1 provides an abbreviated view of data on Gross Domestic
Product (GDP) per capita income and level of democracy for most countries in the world
in 2002. Our measure of democracy is the so-called POLITY index, which classifies
countries on a series of institutional criteria. The index ranges from -10 for the least
democratic societies to 10 for the most democratic societies. Gleditsch & Ward (1997)
provide further details on the construction of this index. We have sorted this table on GDP
per capita and democracy, so that it is easier to see simple patterns among the variables.
As can be seen, some wealthy societies, such as Denmark, are indeed democratic, while
low-income countries, such as Sierra Leone and North Korea, are autocracies. Interestingly,
Lipset suggested that in 1959 Australia, Belgium, Canada, Denmark, Ireland, Luxembourg,
the Netherlands, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and
the United States comprised the list of “stable democracies” in Europe and North and
South America. In 1959 the unstable democracies and dictatorships included Austria,
Finland, France, West Germany, Italy, and Spain. Most of these are now democracies and
generally considered stable. Despite looking at some cases that clearly are consistent with
Lipset’s claim, is there a strong general relationship between wealth and democracy? India
is democratic in spite of low average national income, and although India has recently
experienced high rates of growth, it remains far below the levels observed for OECD
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Table 1.1. Data for 2002. GDP figures are per capita. An abbreviated list is
shown. Full data are available on the Web site for the volume.

Country Democracy GDP Country Democracy GDP

Guinea −1 51 Iran 3 1776
Ethiopia 1 114 Macedonia 6 1801

Burundi 0 120 Namibia 6 1870

Zaire 0 135 Romania 8 1941

Sierra Leone −10 172 Algeria −3 2036

Eritrea −7 175 Bosnia & Herzegovina 0 2108

Malawi 5 178 Thailand 9 2215

Iraq −9 181 Suriname 9 2224
Guinea−Bissau 5 187 Guatemala 8 2257

Liberia 0 194 Russia 7 2279
Rwanda −4 216 Ecuador 6 2305

Mozambique 6 217 Peru 9 2306

Tajikistan −1 221 Colombia 7 2342
Niger 4 247 Jordan −2 2375

Nepal 6 276 Fiji 5 2397

Burkina Faso 0 315 Tunisia −4 2436
Chad −2 317 El Salvador 7 2486

Uganda −4 320 South Africa 9 2607

Tanzania 2 330 Dominican Republic 8 2745
C. African Rep. 5 333 Cuba −7 2891
...

...
...

...
...

...

Turkmenistan −9 1241 Canada 10 25139

Morocco −6 1300 Finland 10 26235
Congo −5 1303 Austria 10 26304

Djibouti 2 1313 Netherlands 10 27059
Byelarus −7 1359 Sweden 10 27497

North Korea −9 1361 United Kingdom 10 27650

Swaziland −9 1412 Japan 10 31731

Albania 5 1416 United Arab Emirates −8 34436

Syria −7 1417 Qatar −10 36611

Kazakhstan −6 1437 Denmark 10 37063

Serbia 7 1573 Switzerland 10 39769
Egypt −6 1602 United States 10 40180

Myanmar (Burma) −7 1729 Norway 10 43895

Bulgaria 9 1744 Luxembourg 10 54255

countries. At the same time, it is also hard to ignore the existence of many relatively high
income autocracies situated in the Middle East, which seems to contradict the claim made
by Lipset. To evaluate the relationship more generally we turn to a systematic,
comparative analysis.

Following the work of Lipset (1959) and many others since, it is common in
empirical, comparative work on democracy to consider democracy as a linear function of
the natural log of GDP per capita. We estimate the level of democracy in a country,
measured by the Polity score, given its GDP per capita using ordinary least squares (OLS)
regression:

Polity score = β0 + β1ln GDP per capita + ε.
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The estimates for this linear regression of democracy on GDP per capita are shown in
Table 1.2. The positive sign of the coefficient for ln GDP per capita illustrates the positive
relationship between democracy and income, but the estimated impact is relatively small
when we take into account the metric of the variables.

Table 1.2. OLS Estimates of democracy as a linear function of logged GDP
per capita, using 2002 data from the Polity project and the World Bank.

β̂ SE(β̂) t-value

Intercept −9.69 2.43 −3.99
Ln GDP per capita 1.69 0.31 5.36

N = 158
Log likelihood (df=3) = -513.62
F = 28.77 (df1 = 1, df2 = 156)

More specifically, this linear model predicts that a country with Uzbekistan’s GDP
per capita ($464 in 2002) would have a democracy score of approximately 1. By contrast,
for a country that has a level of GDP per capita income approximately twice that of
Uzbekistan ($1020), the model predicts an associated democracy score of about 2. For
most analysts, scores of 1 and 2 are considered to be similar on the POLITY democracy
index. Thus, there does not seem to be a large impact of even fairly dramatic differences in
income on the predicted level of democracy, despite the statistical significance of the
estimated coefficient for the log of GDP per capita.

Figure 1.1 shows that the estimated OLS equation predicts democracy levels of poor
countries that are far higher than their actual levels. Nonetheless, the implied, estimated
effect of wealth on democracy is not only small—more than doubling the GDP per capita
has a small impact on democracy—for poor countries, such as Uzbekistan, but probably
overestimated as well. Almost any standard analysis of these residuals will reflect the first
impression given in this figure: they do not look “well behaved,” in the sense that we have
two peaks of observations around high and low values where the model under or
over-predicts the actual level of democracy. Figure 1.1 also shows substantial and
patterned variation around the estimated regression line or general tendency. But are these
residuals organized in a way that is dependent on the interdependencies of the
observations? The right panel in this display shows convincingly that the residuals are not
distributed normally, nor are they even unimodal. Instead there is a cluster of negative
values around −10 and a cluster of positive values around 5. Thus, it is clear in this
example that the residuals from the OLS regression reported in Table 1.2 are problematic,
and raise issues about whether the estimated coefficients in that regression can be trusted.
These residuals suggest that the underlying systematic model does not capture the
relationship between democracy and economic output very well, probably in part as a
result of dependencies among the data—specifically clustering of similar values. It may be
that countries exert influence on each other in ways that would produce such results.
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autocracies at the lower end and democracies at the higher end.
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3. Introducing Spatial Dependence

One possibility for explaining these results is that, in addition to characteristics of
individual countries, the prospects for democracy in one country are not independent of
whether neighboring countries have democratic institutions or not. During the Cold War,
Soviet intervention enforced socialist rules in many states in Eastern Europe. Moreover,
democratic transitions in many Latin American states appear to have been influenced by
processes in other countries (see, e.g., Gleditsch & Ward 2007). Looking at the data in
Table 1.1 organized alphabetically, it would be hard to identify easily whether there are
any pockets or regions of similar regimes beyond what we would expect from GDP per
capita. Even with the information sorted on salient features for comparison, careful
analytical study may be required to identify various kinds of patterns.

Exploratory examination of plausible spatial (and spatial-like) clustering may be
important in a variety of situations, revealing aspects of social interaction that are missing
from unconnected displays. Potentially unobserved clusters can influence our
understanding of what is actually occurring in the part of the model we think we do
understand. Before we turn to an examination of how to take spatial correlation into
account, we explain a bit more about why it is important to do so.

Even if an analyst simply wants to compare means and construct classical statistical
tests, such as difference of means tests, if the data are spatially correlated this becomes
problematic. Consider a one-sample t−test on variable y defined as:

t =
1
n

∑n
i=1 yi

σ√
n

.

If there is a correlation among observations that are near one another temporally or
spatially (first-order serial correlation), then the actual standard error will be larger for
positive values of serial correlation (and smaller for negative values). Researchers tend to
be sensitive to the problem of serially correlated observations over time, but often neglect
the fact that the same problem will apply for serial correlation across observations at the
same point in time. Using the unadjusted estimate of the variance will result in having a
t-value that is larger than warranted. This increases the chance of making a Type-I error,
even for situations in which there is only a small amount of spatial autocorrelation and
abundant observations.

In short, because of serial, spatial correlation among the observations—for whatever
reason—classical tests are biased in terms of accepting the hypothesized substantive
account, even when it is untrue. Assuming that the data are spatially dependent such that
the dependence is inversely proportional to the distance between observations, ρ represents
the resultant, first-order spatial correlation. This correlation measures how similar
neighbors are on some measured attribute. As a result of this correlation, the true
standard error of the data is given approximately by

σy ≈
√

1 + ρ

1− ρ

σ√
(n)

.
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A simple way to understand the impact of spatial correlation is to imagine a
variable y observed on n observations: y1, y2, . . . , yn−1, yn. In many situations, we think of
these observations as being independent of one another and each identically distributed,
typically from a normal distribution of unknown mean µ and variance σ2. The typical
estimator of µ is

y =
n∑

i=1

yi/n.

Since the observations are thought to arise from a normal distribution, inference is based
on y and σ. The 95% confidence interval is given as y ± 1.96σ/

√
n. If there is spatial

correlation among the yi that is greater the closer observations yi and yj are to each other
spatially, then as Cressie (1993: 14) shows, the covariance for positive values of ρ will be:

cov (yi, yj) = σ2 × ρ|i−j|

and the variance is

var (y) = n−2

{
n∑

i=1

n∑
j=1

cov (yi, yj)

}
which expands to

= {σ2

n
}

[
1 + 2{ ρ

1− ρ
}{1− 1

n
} − 2{ ρ

1− ρ
}2 1− ρn−1

n

]
.

The factor
[
1 + 2{ ρ

1−ρ
}{1− 1

n
} − 2{ ρ

1−ρ
}2 1−ρn−1

n

]
essentially is the discount on the number

of observations that is imposed by spatial correlation, which does not disappear in large
samples. If n = 10 and ρ = .26 (as in Cressie’s example), then the discount is about 40%:
ten spatially correlated observations have the same precision as about six independent
observations. This in turn implies that ignoring the spatial correlation leads to a
confidence interval that is far too small when there is positive spatial correlation among
observations. In general, ignoring spatial dependence will tend to underestimate the real
variance in the data. Thus, for a sample of 158 observations on GDP, the 95% confidence
band under an assumption of normality would be 1.96×σ√

n
, but if there were a spatial

correlation of 0.65—the actual value of ρ̂ for GDP from the above example—the correct
confidence interval would be approximately 4.22 instead of 1.96, over twice as large. In the
case of the level of democracy, ρ̂ is 0.47 which leads to a 95% confidence band that is
3.26×σ√

n
, which is almost 70% wider.2

If there are different forms of spatial correlation, then different specific adjustments
may be required, but the general point is that if there is positive spatial correlation, the
sample mean will have less precision. As a result, the null hypothesis will frequently be
rejected when it is true. Thus, it is unwise to rely on statistical tests that perform well in

2Even for the mean, Grenander (1954) illustrates that the minimum unbiased estimator should not ignore
the value of correlated observations:

µ̂ =

[
y1 + (1− ρ)

∑n−1
i=2 yi + yn

]
[n− (n− 2)ρ] .
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independent and identically distributed samples if the underlying data are spatially
(inter)dependent. Schabenberger & Gotway (2005) illustrate this relative excess variability
of the least squares estimator for different levels of autocorrelation in different sample sizes.
For ρ > 0 this excess variability rises with n such that with ρ = 0.9, the excess variability is
approximately 14.0 when the sample size approaches 50. The important point is that
spatially correlated data will wreak considerable havoc with statistical tests designed for iid
data, leading researchers to reject the null hypothesis because the standard tests
underestimate the variability.

4. Maps as Visual Displays of Data

Humans are adroit at recognizing patterns, even where no patterns exist. Often,
this is where statistics comes in. However, in a heuristic, exploratory model, it is useful to
know everything there is to know about your data. Dense tables of numerical information
are important ways of conveying a great deal of information, albeit slowly. Graphical
displays provide an auxiliary method that may allow patterns to be discovered visually,
quickly. However, it is important to use graphical techniques in the context of a plausible
explanation of the phenomena of interest. Recent work has illustrated the importance of
the careful display of evidence and quantitative material, as well as providing a
gold-standard (Tufte 1990, Tufte 1992, Tufte 1997, Cleveland 1993, Wainer 2004). One
guiding principle is that the method of display needs to bear a strong relationship to the
explanatory story being developed.

The classic study of the spread of Cholera in mid-19th century London by John
Snow, popularized in Tufte (1997) and more recently and completely elaborated by
Johnson (2006), provides a good example of such a geographical story. Snow demonstrated
that the spread of the main outbreak of Cholera in London during the summer of 1854 was
a result of Soho inhabitants (and others) drinking water from a pump on Broad Street,
which had become infected from the burial site of many of the victims of the Cholera
epidemic. Thus, proximity to the Broad Street well was a potent risk factor for Cholera,
and this fact played an important role in rejecting the theory that Cholera was airborne.
Snow’s maps of London have become classics illustrating how spatial correlation can
embody causal thinking. Figure 1.2 provides the classic map of the Soho district that
illustrates that many cholera deaths were clustered around the Broad Street pump.

Shaded maps are also an important way for displaying processes that have a
geographical story. In our example, we are suggesting that there is feedback among
proximate countries that influences their political institutions and economic wealth.
Figure 1.3 provides a world “map” shaded by level of democracy measured in 2002 for 158
countries. The story of this map is that democratic institutions are clustered in
neighboring countries and that autocratic countries are also clustered in different regions of
the world. Countries on this map are shaded in increasing levels of gray for higher levels of
democracy. Only countries with the highest democracy score are shaded in black; France,
for example, is the next lightest shade owing to its coding as a 9 on the democracy scale to
reflect the relative independence of the President from the National Assembly. This display
shows that there are strong geographical clusters of democracies and autocracies. By and
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Figure 1.2. John Snow’s map of cholera deaths in the Soho District of Lon-
don during the summer of 1854.

large, most of the democratic countries are located in Western Europe and America, along
with Australia and Oceania, while many autocratic countries are to be found in Africa, the
Middle East, and Asia. There are of course exceptions, with countries such as Belarus
persisting as an autocracy surrounded by (mostly) more democratic neighbors. By
contrast, India is a democracy surrounded by mostly non-democratic neighbors.

Figure 1.3. Countries with high levels of democracy, as measured by the
Polity IV indicators, are shown in darker shades of gray and tend to be grouped
together around the world. Similarly, countries rated as more authoritarian
tend to be grouped geographically.
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In Latin America, most states are democracies in 2002, despite large differences in
their GDP per capita. By comparison, in the Middle East, most states are autocratic,
despite having GDP per capita levels that are consistently higher than the world average.
Indeed, mapping these attributes suggests that both democracy and GDP per capita
display spatial clustering. In many cases, visualization and mapping reveal structure in the
data that is not readily available from looking at the data in tabular format.

Figure 1.4 illustrates the clustering of GDP per capita (logged) in 2002. Wealthy
countries are colored in darker shades of gray, while poorer ones are shown in lighter
shades. This map—offered in gray tones—also presents a picture of strong clustering.
North America and Western Europe are clusters of wealthy countries, while especially
Africa is composed of countries that are poor and also have poor neighbors. There are, of
course, exceptions in wealth as well. Japan and Australia, for example, are on average
much richer than their neighbors.

Figure 1.4. Countries with high levels of GDP per capita are shown in darker grays.

Cartographic data displays are great tools for exploratory spatial data analysis, but
good displays will always embody an empirical or theoretical story.

5. Measuring Spatial Association and Correlation

Unfortunately, just as patterns may be ignored in a data matrix, humans are adept
at seeing structure when there really is none. As such, it is useful to have more formalized
ways of evaluating whether observations are spatially clustered or related across some
forms of ties between observations. We turn to formal exploratory tools in the next section.

Exploring such associations, however, requires that we have some idea about which
observations are likely to be related to one another. For a set of n units, each observation i
can be potentially related to all the (n− 1) possible units, but in practice, however, we can
usually assume that some interactions or ties are more important than others. The network
or structure between units that we are interested in must generally be specified prior to
analysis of dependence between observations. The techniques that we explore here usually
start from a graph or list L of relations between connected observations. For many
purposes it is practical to use a matrix to represent the connectivities between
observations. For example, we can define a binary matrix C that specifies connectivities
between individual observations. We have an entry cij = 1 if two observations i and j are
considered connected, cij = 0 if not.
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The basic ideas of measuring spatial associations and correlations can be thought of
as cross-product statistics, following Hubert, Golledge & Constanzo (1981), which
cross-multiply a measure of spatial proximity with a measure of the similarity of values on
some particular attribute.3 Let Sij be some measure of the spatial proximity of two
observations i and j and let Uij be the similarity on some underlying variable of concern.
Cross-product statistics will have the general form

n∑
i=1

n∑
j=1

SijUij ∀ i 6= j.

If Uij defines similarity as as a mean normalized cross-product on the underlying variable,
say [(yi − ȳ)(yj − ȳ)], then with appropriate scaling, summing this product over all
observations yields a measure of spatial correlation known as the Moran I statistic. If Uij

is defined as a squared difference, such as (yi − yj)
2, the resulting statistic is known as

Geary’s C. In this monograph, we primarily focus on Moran’s I.4

For example, spatial association in the case of measures of democracy would join a
measure of how close countries were to one another in terms of some spatial measurement,
such as whether they had borders within 200 kilometers of one another, with a measure of
the similarity of democracy scores for each pair of countries examined. These statistics are
useful as heuristics for identifying spatial patterns. Perhaps they are most useful as a
diagnostic heuristic for examining the residuals from modeling exercises in which it is
believed there is no (remaining) spatial patterning not accounted for by the model used.

The first task in formally assessing such correlations is to specify the
interdependencies among data. This requires developing a list of which observations are
connected to one another.This is an important step, but one that we will only illustrate
here. Linkages might be established by physical distance, say the distance between capital
cities, as in our example. However, other transmission mechanisms such as the density of
transportation networks via roadways, trains, waterways, and air carriers may be a better
indicator of connection in particular circumstances. Similarly, instead of capital city
distances, scholars have used the length of the border between neighboring countries, for
example, as a measure of interaction opportunities among adjacent countries. In Gleditsch
& Ward (2001) we develop a database of the minimum distances among all countries in the
world. We use these data herein, specifying that countries are neighbors if they have a
minimum distance of 200 or fewer kilometers between them.5

A subset of these data are portrayed in Table 1.3 in two ways, first as a list, then as
a matrix. Many computer programs organize large matrices as lists, since it allows a more
efficient storage of information, allowing only the non-zero elements to be included in
memory. Indeed, for small subsets, it is easier, perhaps, to derive spatial characteristics
and record them as lists of connections. However, each list can be converted easily into a

3In the context of spatial point processes, these are sometimes known as join-count statistics, since they
count the number of neighboring points with similar attributes.
4Both Geary and Moran made important contributions in a number of areas. Geary is most well known
for the Stone-Geary utility function, as well as the methods for calculating the purchasing power parity for
international comparisons of real income.
5These data are available at http://privatewww.essex.ac.uk/~ksg/mindist.html.

http://privatewww.essex.ac.uk/~ksg/mindist.html
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Table 1.3. Connectivity matrix for a subset of European countries. A con-
nection is present if countries have borders within 200 kilometers of one an-
other.

List Format

Country Connections

Denmark Germany, Norway, Sweden
Finland Norway, Sweden
France Germany, Italy, UK
Germany Denmark, France, Italy, Sweden
Italy France, Germany
Norway Denmark, Finland, Sweden
Sweden Denmark, Finland, Germany, Norway
UK France

Connectivity Matrix Format

Denmark Finland France Germany Italy Norway Sweden UK

Denmark 0 0 0 1 0 1 1 0
Finland 0 0 0 0 0 1 1 0
France 0 0 0 1 1 0 0 1
Germany 1 0 1 0 1 0 1 0
Italy 0 0 1 1 0 0 0 0
Norway 1 1 0 0 0 0 1 0
Sweden 1 1 0 1 0 1 0 0
UK 0 0 1 0 0 0 0 0

square matrix that portrays the observations along the rows and columns and the linkages
in the interior of the matrix. A matrix representation is also helpful for defining certain
variables or measures reflecting spatial structures and variation. The first part of Table 1.3
presents a set of connectivity data as a list; the second part illustrates the corresponding
binary connectivity matrix C of these connections.

These data can also be presented as a simple network graph, as in Figure 1.5. Such
graphs are illuminating, but they quickly become convoluted, crowded, and difficult to read
when the number of nodes is high. Panel (b) shows the crowding in the network map of all
158 countries. However, such visual network representations may be a useful way to
examine some data sets, especially those that are smaller.

Once we have a potential network of connections between observations specified by
a list L or a connectivity matrix C, we can explore whether the values on a variable of
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Denmark
Finland

France

Germany

Italy

Norway

Sweden

UK

(a) Linkages among Eight European Countries

(b) Linkages among 158 Countries

Figure 1.5. A simple network representation of the data in Table 1.3 and
among 158 countries (panel b). The USA is black, China and Russia shades
of gray in panel b. Size of nodes is proportional to the number of countries
within 200 kilometers.
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concern, which we denote here as y, are similar across connected or neighboring
observations. One way to do this would be to look at whether two connected observations i
and j tend to be similar to one another, for example by determining whether high or low
values for i tend to go together with high or low values for j. But i is usually connected to
many observations, and we do not have spatial clustering unless it is similar to many of its
neighbors. To combine information about the connected observations, we usually assume
that all neighbors carry equal weight and that the weight of each is proportional to 1 over
the total number of connectivities. The main goal of getting a “spatial lag” is to derive an
average value that exists in neighboring region. What is the average value of democracy in
the neighbors of the United States? What is the average value of GDP per capita of
Ghana’s neighbors? Are these average values of neighboring observations correlated with
each country’s own score on democracy or GDP per capita? We present a heuristic statistic
for gauging this, a statistic that measures the spatial correlation. In much the same way
that a researcher might generate the correlation matrix among independent variables, this
spatial correlation might also provide heuristic information about the observed data.

Let ys
i denote the mean or average of y across all connected observations, or the

“lag” of y over space. Matrix representation makes it easier to see the construction of the
spatial lag ys

i from y and the connectivity matrix C. We can create a row-normalized
connectivity weight matrix W where each row sums up to 1 by dividing each row vector ci·
of the binary connectivity matrix C by the total number of links

∑
ci·. An example is

given in Table 1.4.

Table 1.4. Row-standardized connectivity matrix for a subset of eight Euro-
pean countries. A connection is present if countries have borders within 200
kilometers of one another.

Denmark Finland France Germany Italy Norway Sweden UK

Denmark 0 0 0 1/3 0 1/3 1/3 0
Finland 0 0 0 0 0 1/2 1/2 0
France 0 0 0 1/3 1/3 0 0 1/3
Germany 1/4 0 1/4 0 1/4 0 1/4 0
Italy 0 0 1/2 1/2 0 0 0 0
Norway 1/3 1/3 0 0 0 0 1/3 0
Sweden 1/4 1/4 0 1/4 0 1/4 0 0
UK 0 0 1 0 0 0 0 0

In this context, the scalar ys
i = ci·y calculates (by summing) the average or mean

across all neighboring observations of one unit i. This is often referred to as the spatial lag.
The relationship ys = Wy reminds us how each ys

i is related to values of y for other states
and the connectivity weights wi.. Table 1.5 presents the ten largest, positive and negative
spatial lags for the democracy variable. Bahrain has a democracy score of −8, for example,
but is surrounded by neighboring countries which all have the maximum, negative
democracy score, −10. Ireland and Portugal, on the other hand, have the highest possible
democracy score as do all of their neighbors.
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Table 1.5. The ten countries with the largest and smallest spatial lags are
listed with their corresponding democracy and spatially lagged democracy
scores.

Largest Negative Spatial Lags
Country Democracy Spatial Lag

Bahrain -8 -10
Tajikistan -1 -7.1
Oman -9 -6.7
Kyrgyzstan -3 -6.6
United Arab Emirates -8 -6.5

Uzbekistan -9 -6
Qatar 10 -5.8
Yemen -2 -5.5
Kuwait -7 -5.3
Israel 10 -5

Largest Positive Spatial Lags
Country Democracy Spatial Lag

Luxembourg 10 9.8
Switzerland 10 9.8
United Kingdom 10 9.8
Belgium 10 9.8
Netherlands 10 9.8
Canada 10 10
Fiji 5 10
France 9 10
Ireland 10 10

Portugal 10 10

6. Measuring Proximity

For many social scientists, developing a measure of the proximity of units being
studied is perhaps the most important step in spatial analysis. What is distance, in a social
context? While many physical scientists will be able to use a strict measure of geographical
or Euclidean distance to gauge how close trees are to one another, for example, this issue is
considerably more complicated for many social science analyses. How close are, for
example, the United States and Mexico? If we use a strict contiguity measure, they are
perfect neighbors since they share a land border. But Canada also shares a land border
with the United States. Does this imply that it is equally close to the US? The
straight-line distance from Washington, D.C. to Mexico City is approximately 3000
kilometers, while the distance from Washington, D.C. to Ottawa is about 700 kilometers.
We might use the length of borders between countries, or the distances between the
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average of the 10 largest population centers in each country. Figure 1.6 illustrates the
difference between these two specifications. In some countries, the centroid is quite distant
from the actual capital city, but in small countries this cannot be the case. China, Canada,
Russia, Australia, and the United States are examples which illustrate the distance
between these two locations. By contrast, in North and South Korea there is little distance
between the centroids and the capital cities.

Another important issue in applied work is how to deal with missing spatial data.
Imputation may be one approach, though other alternatives exist (Griffith 2003). A real
problem is that social science data are frequently missing, but rarely randomly missing. In
non-spatial applications this may be handled in the standard fashion—by imputation or,
more frequently, by deletion of observations with missing information. However, in the
spatial framework, such missing data may create “holes” in the spatial representation and
undermine establishing a salient and complete representation of the spatial proximities.
Another problem that can occur in some kinds of spatial setups is that some observations
will not be linked to other observations. For example, New Zealand is not within 200
kilometers of any other independent polity. Two strategies are widely employed to
circumvent these situations. Islands isolates are often deleted from the analysis, since at a
substantive level they are not “connected,” and thereby will not affect other observations
via the spatial process being studied. More prosaically, deleting them will purge the
resulting spatial weights matrix of certain singularities (rows and columns composed
entirely of 0s). A second strategy is simply to choose the “nearest” or most plausible
neighbors for the islands, linking Australia and New Zealand as neighbors, for example,
even if all other linkages are set for 200 kilometers. More generally, one can use nearest k
neighbor distances for all units.

Figure 1.6 can be generated in R via the following commands:

R code# Set working directories
dd <- c("C:.../wgworldmap")
setwd(dd)

# Load required libraries
library(RColorBrewer);library(maptools)
library(spdep);library(sp);library(rgdal)

# Read a Robinson projection map from an ESRI shapefile
rob.shp <- read.shape("wg2002worldmap.shp")
# Indicate the id codes for each polygon/country
rob.map <- Map2poly(rob.shp,region.id =

unique(as.character(rob.shp$att.data$FIPS_CNTRY)))
# Set up map for plotting
plot(rob.map, border="Grey",forcefill =TRUE,xaxt="n",

yaxt="n",lwd=.000000000125,las=1,ylab="",main="",xlab="")
# Indicate the map projection
tr <- readShapePoly("wg2002worldmap",

IDvar="FIPS_CNTRY", proj4string=CRS("+proj=robin +lon 0=0"))
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Figure 1.6. Geographical centroids are marked with open, gray dots, while
the capital city is shown with a black dot. These two centroids are joined by a
thin line within each country.
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# Extract the relevant variables and exclude missing data
ct <- na.omit(rob.shp$att.data)[,c(18:20)]
# Make the city name the row name
rownames(ct) <- as.character(na.omit(rob.shp$att.data)[,13])
# Assign relevant variable/column names
colnames(ct) <- c("x", "y", "City_POP")
ct$x <- as.numeric(as.character(ct$x))
ct$y <- as.numeric(as.character(ct$y))
coordinates(ct) <- c("x", "y")
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proj4string(ct) <- CRS("+proj=longlat +datum=WGS84")
# tranform the coordinates to the robinson projection
ct_rb <- spTransform(ct, CRS=CRS("+proj=robin +lon0=0"))
# Now plot the map itself
plot(rob.map,border="Grey" ,forcefill=T,xaxt="n",yaxt="n",bty="n",

lwd=.000000000125,las=1,ylab="",
main="Centroids and Capitals",xlab="")

points(coordinates(tr), pch=19,cex=.5, col="grey") # Add centroids
points(coordinates(ct_rb), pch=19, cex=.5, col="black") # Add capitals

Above we have suggested two basic metrics for measuring distance, but this just
scratches the surface. This metric of distance could be thought of in terms of average travel
times, the number of mobile phone conversations between each pair of points, the amount
of tourism from each point to every other location, or any variety of different measures of
distance and interactions. Countries that have a large amount of commerce with each
other, for example, can be thought of as economically “close” (Lofdahl 2002). Griffith
(1996) offers some ideas about how such measures can and should be developed.

It would seem natural to estimate the similarity between states’ own level of
democracy and the levels of their neighbors by the correlation between y and ys. The
linear association between a value and a weighted average of its neighbors is known as the
Moran’s I statistic (Moran 1950a, Moran 1950b), a global correlation of the values of an
observation with those of its neighbors. The generalized Moran’s I is given by a weighted,
scaled cross-product:

I =
n

∑
i

∑
j 6=i wij (yi − ȳ) (yj − ȳ)(∑

i

∑
j 6=i wij

) ∑
i (yi − ȳ)2

.

where w denotes the elements of the row standardized weights matrix W and y is the
variable of concern.

If the observations of y are independent and identically distributed (iid), then I can
be considered normal (asymptotically) with a mean that is −1

n−1
. The variance of Moran’s I

is then given by:

Var(I) =
n2(n− 1)1

2

∑
i6=j(wij + wji)

2 − n(n− 1)
∑

k(
∑

j wkj +
∑

i wik)
2 − 2(

∑
i6=j wij)

2

(n + 1)(n− 1)2(
∑

i6=j wij)2
.

If the variable of concern is standardized as zi Moran’s I is simply:

I =
1

2

∑
ij

cijzizj, ∀ i 6= j.

The Moran’s I statistic is often used as a test of spatial correlation by constructing a
Z−score with the mean and variance components.

The Moran’s I does not really have a fixed metric, and its expected value is
−1/(n− 1) rather than 0. However, the Moran’s I statistic can be given a graphical
interpretation that helps convey how spatial association among individual cases will give
rise to different values of the statistic. Consider a scatter-plot of ỹ against its average
among neighbors’ ỹs (we use a standardized ỹ = (y− ȳ)/sd(y) so that the value has a mean
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of 0 and a standard deviation of 1). In this plot, the distribution of observations in the four
quadrants around the mean of ỹ and ỹs captures a picture of the spatial association of the
variable y. If there is no spatial clustering or association in y, the individual values of ys

should not vary systematically with y. However, if there is a positive spatial association,
individual observations that have values above or below the mean on y should also be low
and high respectively on ys, or among proximate countries. The bulk of the cases should
fall in the South-West and North-East quadrants where units are similar to their neighbors,
and we should have few observations in the North-West or South-East quadrants. If we fit
a regression line to this scatter-plot, its slope is the Moran’s I correlation given the original
variable y and the connectivity list L or matrix C.

Figure 1.7 provides a stylized plot illustrating the Moran I statistic and the
interpretation of a scatter-plot of a variable and the first-order spatial lag. The slope of the
regression line is the average spatial correlation in the data; it is the Moran’s I statistic.

−3 −2 −1 0 1 2 3
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−2

−1

0

1

2

3

standardized variable

(high,high)

(low,low)

(low,high)

(high,low)

1s

2s

s

s

Slope is
 M

oran
’s I

spatial lag
standardized 
variable

Figure 1.7. Scatter-plot of a variable and its spatial lag. The variable is
standardized to have a mean of 0 and a variance of 1. Clusters of observations
in homogenous neighborhoods are shown in shaded areas. The OLS regression
line is also plotted.

Moran’s I compares the relationship between the deviations from the mean across
all neighbors i, adjusted for the variation in y and the number of neighbors for each
observation. Higher values of a Moran’s I indicate stronger positive (geographical)
clustering, i.e., that values for neighboring units are similar to one another. This statistic
measures the average correlation of an observation with its neighbors. Figure 1.7 illustrates
the basic concept. The spatial lag (the average value of one’s neighbors) is shown on the
vertical axis, while the horizontal axis portrays the value of each observation, standardized
to have means of 0 and variances of 1. A box is drawn to indicate ±2, and most of the
observations fall inside this boundary (note that 2σ = 2 here since the variable is
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standardized). Those observations that fall in the shaded boxes are cases that are in
homogenous neighborhoods. Those in the upper, shaded area between (0, 0) and (2, 2) are
observations that are above the mean on the measured variable and have neighbors that,
on average, are also above the mean. Similarly, the shaded box between (0, 0) and (−2, 2, )
are observations that are below the mean and also have neighbors similarly characterized.
This diagonal has many of the observations in this scatter-plot and highlights the
clustering of similar values. But there are a few cases that represent observations with low
values on the observed variable, but with neighbors that are, on average, much higher than
the mean on this variable. The single point in the upper left part of the scatter-plot is such
an observation, one that can be thought of as an enclave of low values in a neighborhood of
high ones. An OLS regression line through all of these standardized observations will
produce a summary measure of the relationship between the value of an observation and
that held by its neighbors. If, for example, the variable of concern were crime rates and
these were measured for each precinct in metropolitan Houston, the observations in the
upper right part of the figure would be precincts with high crime rates, surrounded by
precincts that also had high crime rates. Similarly, those in the lower left would represent
precincts with low crime rates, surrounded by precincts that also had low rates of crime.
The slope of the regression line through these standardized points is the Moran’s I statistic.

Statistical testing of the Moran’s I coefficient requires additional assumptions, since
we need to have the first and second moment (mean and variance) for simple probability
testing in the classical framework. First and foremost is the often overlooked step of the
hypothesis-testing framework: specifying the null hypothesis. For a spatial model, this is
not necessarily obvious as there are many patterns that are substantially different from any
spatially organized variable. For example, is the spatial pattern normally distributed? Or,
is it randomly distributed? If random, exactly how is it random in space? Generally, two
approaches are found in the literature, each somewhat ad hoc. The first of these assumes
that the data are normally distributed. Cliff and Ord (1971) worked out the variance of I
under this condition. There is substantial work suggesting that assuming a normal
distribution for Moran’s I is an often incorrect assumption (Boots &
Tiefelsdorf 2000, Tiefelsdorf 1972), but most software and applied articles still assume
normality.6 The second approach is to use Monte Carlo simulation to randomly permute
the rows and columns of the connections matrix sufficiently to provide a randomized null
model. Both of the main options are available in most software, and will
generally—although not always—yield similar results.

6The Moran’s I is developed for looking at single variables. When there is an explicit multivariate model,
such as the case with OLS residuals, it is recommended to use a slightly different version of the Moran
statistic, to guard against overestimating the extent of spatial correlation. Practically, there is often little
difference, and the widespread practice is to use the standard Moran statistic in both of these instances.
An alternative approach has been developed. Tiefelsdorf (1972) developed a saddlepoint approximation
to the underlying distribution, and this method does a better job than the Moran’s I at matching the
tails of the distribution in many situations. We are indebted to Roger Bivand for his thoughtful advice on
this matter. The R spdep function lm.morantest.sad() implements the Tiefelsdorf saddlepoint approach.
A more straightforward approach is to use Lagrange Multiplier tests to test for specific forms of spatial
autocorrelation, an approach we expound in the subsequent chapter.
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Figure 1.8. Shin plots for democracy and GDP.

The standardized scatter plot for democracy is given in Figure 8(a). This graphic
has a box drawn at ±2σ to give a sense of which observations are vastly unusual.
Observations that occur in the top-right quadrant represent those cases that have relatively
high values, “surrounded” with other cases that also have high values. Cases in the bottom
left-quadrant are cases which have relatively low values and are surrounded by other cases
with similarly low values, Bahrain being the extremum. The “off-diagonal” cases represent
cases that, in this example, are surrounded by countries with vastly different levels of
democracy. As illustrated, there are remarkably few such cases for autocracies (the most
exceptional being Belarus) and even fewer for democracies. The figure also portrays a
regression line, the slope of which provides the Moran’s I for democracy (0.64) that is
much larger than the expected value of the statistic in this example ( −1

158
). The plot for

GDP per capita is given in Figure 8(b). Guinea is the country at the lower left, outside the
2σ square; Luxembourg is just outside this area at the top right.

We can use the Moran’s I on the OLS residuals from the estimation reported in
Table 1.2 to see if the residual variation appears to display spatial clustering.7 This is only
a heuristic check, much like using it on the raw data themselves. This can be easily done in
R, using the defined regression object ols1.fit and a list of neighbors, defined using a 200
kilometer distance band from the outer boundaries of countries to determine each country’s
“neighbors,” contained in the list nblist.

R code library(spdep) # Load spdep library for moran.test()
moran.test(resid(ols1.fit),nb2listw(nblist))
lm.morantest(ols1.fit,nb2listw(nblist))

7As noted by Haining (2003, pages 276-283) the standard Moran’s I may overstate the spatial correlation
of residuals if there is strong spatial patterning of the independent variables.
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The computed Moran’s I statistic for these OLS residuals is 0.40, with a variance of
0.0028. This has an associated standard score of 7.77 that is much larger than −1

158
and has

an associated p-value that is ≈ 0. This tells us that the OLS results, which assume
independent observations, are strongly affected by the spatial clustering in the dependent
and independent variables. As a result, they are likely to be misleading for both the
statistical and substantive inferences that we may wish to draw about the relationship
between democracy and its social requisite of wealth, as captured in GDP per capita.

7. Estimating Spatial Models

What might constitute a simple set of steps for spatial analysis?

First: Map the data, especially the dependent variable. This can be done in a variety of
contexts, ranging from spreadsheet plugins, map mashups, and GIS packages, but
we find it best to undertake this in the context of a platform that will permit
statistical analysis of these data. We illustrate the use of R libraries, especially
maptools and spdep for constructing simple maps of the distribution of variables.

Second: Also, determine if there is some discernable spatial correlation in the dependent
variable. For most applications—i.e., not point processes—that we consider in this
monograph, this means calculating the Moran’s I statistic, in order to gauge the
magnitude of spatial correlation. Analysts may in some cases wish to proceed to
examine and plot/map each observation’s contribution to spatial correlation,
through local indicator of spatial association (LISA). We do not pursue this in any
detail in this monograph. See Gleditsch & Ward (2000), Anselin (1995), and Ord
& Getis (1995) for further discussion and examples.

Third: Precisely incorporate these spatially lagged variables into the basic statistical
framework and examine the resultant residuals for remaining spatial association.

Fourth: In addition to employing the normal model heuristics to gauge the fit of the model
and the degree of uncertainty in the estimated parameters, the equilibrium impact
should be computed and examined. This means teasing out the equilibrium,
feedback implications of the estimated spatial model for the dependent variable.

We now turn to an illustration of these steps in the context of our running example.

7.1. Mapping the Data and Constructing the Spatial Weights Matrices. We
have illustrated mapping of data with the democracy scores for 158 countries in 2002. In
this subsection, we illustrate the use of mapping with the residuals from the OLS model.
The data themselves were mapped earlier in Figures 1.3 and 1.4. We have also shown that
the residuals from the regression of democracy on income display spatial association. We
calculated the Moran’s I, using a 200 kilometer distance band from the outer boundaries of
countries to determine each country’s “neighbors.” As previously reported, the Moran I in
this case had a value of 0.40 and a variance of 0.0028. This is significant in a classical
sense, and allows us to be confident that the spatial patterns that were perceived in
Figures 1.3 and 1.4 are actually influencing the regression results in a substantial fashion,
i.e, introducing bias into estimates and standard errors. These residuals from the OLS are
displayed in Figure 1.9.
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Figure 1.9. Geographic display of residuals from the OLS regression.

7.2. Looking for Spatial Patterns. We also illustrate the construction of a so-called
Shin spatial scatterplot, adapted from the work of Shin (2001). This plots the standardized
value of each input variable—in this case the residuals—against its spatial lag or average
value for its connected observations. The shaded boxes indicates concordant observations
where a value above the mean of the residual is accompanied by a positive value for its
neighbors. The axes contain a “rug plot,” indicating the distribution of the variables. An
estimated kernel density estimate of the distribution of the variable itself and the spatial is
displayed in the outer margins. We provide the code to generate this plot (Figure 1.10):

R code pdffilename <- c("file name and path")
pdf(file=pdffilename, width = 5.0, height = 5.0,family="Times")
dem <- (resid(ols1.fit)) # residuals
ds <- (dem-mean(dem))/sqrt(var(dem)) # standardized democracy score

# create spatial lag and standardize it
ds.slag <- as.vector(wmat%*%ds)
ds.slag <- (ds.slag-mean(ds.slag))/sqrt(var(ds.slag))
plot(ds,ds.slag,...)
reg1 <- lm(ds.slag~ds)

# establish a grid
xgrid <- seq(-3,1.5,length.out=158)
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x0 <- list(ds=xgrid)
pred.out<-predict(reg1,x0,interval="confidence")

# put 1 and 2 sigma boxes on plot
lines ( c(-2,-2,+2,+2,-2),c(-2,+2,+2,-2,-2))
lines ( c(-1,-1,+1,+1,-1),c(-1,+1,+1,-1,-1))
lines ( c(-2,+2),c( 0, 0))
lines ( c( 0, 0),c(-2,+2))

# some text for context
text(-2.5,3,"(low,high)");text(2.5,3,"(high,high)")
text(-2.5,-3,"(low,low)");text(2.5,-3,"(high,low)")
polygon(x=c(-1,0,0,-1), y=c(-1,-1,0,0), col = "slategray3")
polygon(x=c(0,1,1,0), y=c(0,0,1,1), col = "slategray3")

# plot c.i. region
polygon(x=c(xgrid,rev(xgrid)),

y=c(pred.out[,3],rev(pred.out[,2])),col="slategray3",border=T)

# put data on plot
points(ds,ds.slag,pch=20)

# densities
sldensity <- density(ds.slag)
lines(sldensity$y+2,sldensity$x,lty=2,col="slategray4")
ddensity <- density(ds)
lines(ddensity$x,ddensity$y+2,lty=2,col="slategray4",xlim=c(-2,2))
points(ds,ds.slag,pch=20)
lines(xgrid,pred.out[,1],type="l",lty=2,col="gray80",lwd=2)

# rugs on two sides
rug(jitter(ds,factor=2),col="slategray3")
rug(ds.slag,side=2,col="slategray3")

# label some points
text(-2.,-2.3,"Oil Exporters",col="slategray4")
dev.off()

Next we turn to examining the spatial associations of the measurements on
democracy. The spatial lag of the democracy variable is simply the average level of
democracy in surrounding countries. Countries having neighbors with high democracy
scores will have a high value here, and countries with more autocratic neighbors will have
large negative values. We map these in Figure 1.11. The map illustrates that most of
Africa and Asia are characterized by non-democratic neighborhoods, while Europe and
much of the Americas have countries with democratic neighbors (Gleditsch 2002a).

The code to implement this follows:
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Figure 1.10. Shin Plot of OLS Residuals.

R code # sldv2 is the data.frame
# mdd2 is the minimum distance data.frame
nblist <- vector(mode="list",length=dim(sldv2)[1])
attr(nblist,"region.id") <- sldv2$tla
attr(nblist,"class") <- "nb"
nbnms <- data.frame(sldv2$tla,c(1:dim(sldv2)[1]))
names(nbnms) <-c ("acr","nm")

min200 <- mdd2[mdd2$mindist<=200,] # Create a index of the isolates
nodata <- setdiff(sldv2$tla,unique(c(min200$ida,min200$idb)))

# Find neighbors for each row in the sldv for(i in 1:dim(sldv2)[1]){
temp <- min200[min200$ida==sldv2$tla[i] |

min200$idb==sldv2$tla[i],]
cty <- unique(c(temp$ida,temp$idb))
cty <- setdiff(cty,sldv2$tla[i])
nblist[[i]] <- nbnms[match(cty,nbnms$acr),"nm"]

}

# wmat is the row standardized weights matrix
wmat <- matrix(0,ncol=dim(sldv2)[1],nrow=dim(sldv2)[1])
rownames(wmat) <- colnames(wmat) <- sldv2$tla
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Spatial Lag of Democracy

Cutpoints
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Figure 1.11. The Spatial Lag of Democracy; Darker shades indicate higher
values on the spatial lag variable.

for (i in 1:dim(min200)[1]){
wmat[min200$ida[i],min200$idb[i]] <- 1

}

wmat<-wmat/rowSums(wmat)

# calculate the spatial lag of democracy
democracy.spatial.lag <- as.vector(wmat%*%sldv2$democracy)

In addition to mapping the first-order spatial lag of democracy, it is also useful to
map the contributions of each observation to the global Moran I statistic. This quantity is
known as the LISA statistic. Herein we standardize these, and provide a mapping that is
displayed in Figure 1.12. The local Moran is developed in Ord & Getis (1995), Anselin
(1995), and Getis & Ord (1996).

This map illustrates which countries have the most unusual situations in terms of
their neighbor’s level of democracy. Southern and Western Africa fall into this category, as
does India. However, we note that China has a large positive score on the Moran I, while
several of its neighbors are at the opposite end with large negative Moran I scores.

8. Summary

Having first carefully examined our data and visual displays of these data, we
explored the results of an OLS regression positing that the level of democracy is a linear
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Local Moran Z's
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Figure 1.12. Z-scores from the Local Moran’s I statistics are shown in gray
scale representing similarity to neighbors.

function of wealth, measured as logged GDP per capita. We inspected the residuals from
this regression, and found convincing evidence that the residuals appear to display spatial
clustering, violating the regression assumption that the error terms of individual
observations can be considered independent of one another. As such, OLS assuming
independent observations will not be a compelling method for analyzing the relationship
between income and democracy. More fundamentally, a model assuming independent
observation where only income matters for democracy ignores important features of
obvious geographical clustering. We have also shown how maps and simple statistics can
be used as informative heuristics to asses the extent and nature of spatial clustering.

Even if one is not interested in regression analysis, there is room for examining
spatial patterns in social science data. We show that whether one is going to simply do a
test of means or use a regression approach to examining data that are spatially organized,
failure to take the spatial correlation into account will lead to incorrect inferences that are
generally biased away from rejecting the stated hypotheses.

Cartographic displays of correlational data provide an exploratory heuristic for
determining the presence of spatial patterns, patterns that can complicate statistical
inference. We turn next to estimation of regression models with spatially lagged dependent
variables, an approach that can help to take spatial dependencies explicitly into account
within a regression framework.



CHAPTER 2

Spatially Lagged Dependent Variables

In this chapter, we describe a statistical model that incorporates spatial dependence
explicitly by adding a “spatially lagged” dependent variable y on the right hand side of the
regression equation. This model goes by many different names. Anselin (1988) calls this
the “spatial autoregressive” model, but this terminology is potentially confusing since the
term autoregressive is used to denote quite different spatial models in the geostatistical
literature. For simplicity, we will here call it the spatially lagged y model, since its main
feature is the presence of a spatially lagged dependent variable among the covariates.

The spatially lagged y model is appropriate when we believe that the values of y in
one unit i are directly influenced by the values of y found in i’s “neighbors.” This influence
is above and beyond other covariates specific to i. If we believe that y is not influenced
directly by the value of y as such among neighbors, but rather that there is some spatially
clustered feature that influences the value of y for i and its neighbors but is omitted from
the specification, we may consider an alternative model with spatially correlated errors,
which we discuss subsequently. For the spatially lagged y model to appropriate, the
dependent variable y must be considered as a continuous variable. In this monograph, we
do not examine the generally more complicated case of binary dependent variables. These
are more complicated since they often do not have a closed-form solution and must be
estimated with iterative techniques outside the range of this volume (see Ward &
Gleditsch 2002).

1. Regression with Spatially Lagged Dependent Variables

To motivate and illustrate the spatially lagged y model, we return to our example
on the distribution of democracy around the world. We have seen that the distribution of
democracy displays spatial clustering in the sense that countries are more likely to have
higher values on the POLITY democracy score if they are surrounded by countries that
also have high levels of democracy. Although some of the clustering in democracy
obviously could be due to spatial clustering in GDP per capita, which in turn is positively
related to democracy, we have shown that the spatial clustering in the democracy data
does not completely disappear when we condition on a country’s level of GDP per capita.
The assumption that the errors εi of a model treating democracy as a function of GDP per
capita are independent can easily be examined by testing for possible spatial dependence in
the residuals from the regression, i.e., ε̂i = (ŷi − y), using the Moran’s I correlation
coefficient and our specified pattern of connectivities in the matrix C, where states in this
case are defined as connected if they are within a 200 km distance threshold of one
another. In this instance, we found strong evidence of residual spatial correlation. The

29
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Moran’s I statistic for these residuals is 0.40, which has an associated Z-score of
approximately 8.1 This is far from what we would expect if the null hypothesis of spatial
independence were true. Stated differently, this implies that there is considerable positive
association between the democracy level of a country and that of its geographical
neighbors, above and beyond what we would expect from their levels of GDP per capita.
This result is fairly typical, and it will often be the case that including spatially clustered
covariates alone will not completely remove spatial clustering in the outcome of interest.

Given that the distribution of democracy still displays spatial clustering after
conditioning on a country’s GDP per capita, we should look for possible ways to
incorporate this spatial dependence in our previous regression model. As in the case of
serial clustering over time, we can think of spatial autocorrelation either as nuisance or
substance. Spatial dependence leads to problems with the regression estimate β̂ for the
effect of GDP per capita and its standard errors, since the errors cannot be considered to
be independent among connected units. These problems in estimating the effect of GDP
per capita on democracy can in principle be addressed through alternative estimators that
take into account the spatial correlation of the errors, i.e., the residual variation not
captured by GDP per capita alone. This approach is often known as the spatial error
model, an approach we discuss subsequently.

However, our broader interest here is in what influences democracy, not just
estimating the association between a country’s GDP per capita on its prospects for
democracy. If a country’s level of democracy appears to be associated with its neighbors’
level of democracy, this tells us something important about the distribution of democracy
itself and provides an opportunity for learning something about possible influences from
spatial dependence on prospects and constraints on democracy. As such, a more plausible
and interesting approach is to consider the spatial association as a substantive feature of
democracy rather than a statistical nuisance.

The spatial association observed here suggests that we have dependence among
observations such that the expected value of democracy for a country i differs notably
depending on level of democracy in neighboring states j. Instead of letting expected
democracy for a country i depend just on GDP per capita, we devise a model where
democracy is a function of both its own GDP per capita and the level of democracy among
neighbors, defined by wi·yi where the entries of the connectivity vector wi· (i.e., row i from
matrix W) acquire non-zero values for all states j that are defined as connected to i.
Recall again that the W connectivity matrix is row-standardized, so that each row in wij

sums to 1.
This reasoning suggests a spatially lagged dependent variable model of the form

yi = β0 + β1xi + ρwi·yi + εi,

where a positive value for the parameter associated with the spatial lag (ρ) indicates that
countries are expected to have higher democracy values if, on average, their neighbors have
high democracy values.

1Using the saddlepoint adjustment based on the Barndorff-Nielsen approach yields a slightly reduced assess-
ment: the associated Z-score is 6.9.
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One can think of the spatially lagged y model as analogous to an autoregressive
time series model where temporal serial correlation is addressed by including a lagged
dependent variable yt−1 on the right hand side when we estimate the effects of other right

hand side covariates (say xt) on yt. The β̂1 coefficient in the spatially lagged y model differs
from the coefficient calculated via OLS regression model in that we are now assessing the
effect of GDP per capita on the democracy level of a country, while controlling for spatial
dependence in y, or the extent to which variation in a country i’s level of democracy can be
accounted for by the value of y in other connected countries j. Hence, we will need to take
into account the spatial ramifications when assessing the effect of changes in x.

Tables 2.1 and 2.2 provide the estimates from an OLS regression on the level of
democracy on the natural log of per capita GDP in 158 countries in 2002 with and without
a spatial lag of y. We observe a large positive coefficient for the log of GDP per capita of
1.68 in the OLS without the spatially lagged y. By contrast, in the spatially lagged y
model, the estimated coefficient for the log of GDP per capita is 0.76, less than half of its
original size, although it continues to be far away from 0 by the conventional standards for
significance tests.

Table 2.1. OLS without spatial lag.

OLS β̂ SE(β̂) t-value

Intercept −9.69 2.43 −3.99
Ln GDP per capita 1.68 0.31 5.36
N = 158
Log likelihood (df=3) = -513.62
F = 28.77 (df1 = 1, df2 = 156)

Table 2.2. OLS with spatial lag.

OLS β̂ SE(β̂) t-value

Intercept −4.98 2.07 −2.40
Ln GDP per capita 0.76 0.28 2.72
ρ 0.76 0.088 8.65

N = 158
Log likelihood (df=4) = -482.48
F = 58.64 (df1 = 2, df2 = 155)

The estimate for the spatially lagged y term is large and positive (0.76) and highly
statistically significant by standard criteria. This provides support for the conjecture that a
country’s level of democracy co-varies with the level of democracy among its geographical
neighbors. In substantive terms, the model implies that a country’s expected level of
democracy would be -7.6 points lower if its neighbors had an average democracy score at
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the minimum possible score (i.e. -10) compared to a neighbor average of 0, which is close
to the historical average POLITY score since 1945. Conversely, a country with the
maximum neighbor average democracy score of 10 would be expected to be 7.6 points
“more democratic” relative to a country with a neighbor average of 0. These estimates
reflect the clustering of democracy illustrated previously. Although most democracies tend
to have higher GDP per capita, we do observe clusters of democracy in 2002 in areas where
GDP per capita is not particularly high, as in Latin America, and clustering of autocracies
in areas with high average GDP, as in the Gulf states.

Comparing the measures of the overall fit for the model assuming independent
observations in Table 2.1 and the model with the spatially lagged y in Table 2.2 indicates
that the model with the spatially lagged y term fits the data notably better. It has a
higher F statistic and a higher log-likelihood than the model assuming independent
observations. This in turn reinforces our belief that the spatial lag of y adds something
important to specifying the distribution of democracy, beyond what we would expect from
a country’s GDP per capita. Model heuristics alone do not provide the compelling reason
for using the spatial approach, however. The spatial approach is better not because of the
heuristics it produces alone, but because it specifies a plausible form of the feedback or
dependency among observations.

A standard ordinary least squares regression has the following form:

yi = xiβ + εi.

If εi is decomposed into a spatially lagged term for the dependent variable–which is
correlated with the dependent variable–and an independent error term, εi = ρwi·yi + εi,
this leads to the formulation for spatially lagged dependent variables:

yi = xiβ + ρwi·yi + εi.

If however we specify this differently εi = λwi·ξi + εi, this leads to

yi = xiβ + εi + λwi·ξi,

which is a spatial error formulation.
Obviously, both of these formulations can be thought of as a way to decompose

(re-specify) the original error term. Assuming an appropriate, identical weighting matrix,
they are equivalent when λξi = ρyi. If the re-specification is not intended to affect the
mean level of the dependent variable, but to capture information about the structure of the
error process (λwi·ξi), the resultant model is known as the simultaneous, spatial error
model. If however, the re-specification is intended to capture influences upon the mean
level of the dependent variable (ρwi·yi), the resulting model goes by a variety of names, but
we denote it as the spatially lagged dependent variable model. We turn next to an
examination of the spatially lagged dependent variable model; the spatial error model is
addressed in Chapter 3.2

2Further such decompositions can also be envisioned, such as the introduction of hierarchical covariates that
selectively apply to observations in specific regions or administrative districts. Such models are not addressed
in this monograph.
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It is tempting to interpret the coefficient estimate for GDP per capita in the model
with the spatially lagged y in Table 2.2 and compare this directly with Table 2.1,
suggesting a seemingly larger effect of GDP per capita. However, this interpretation is not
correct. The coefficient estimates have different interpretations, as the model with the
spatially lagged y in Equation 2.1 is an autoregressive specification, so that the coefficient
for the impact of x now reflects the short-run impact of xi on yi rather than the net effect,
as is the case of the coefficient for x in the OLS model without the spatially lagged y. Since
the value of yi will influence the level of democracy in other states yj and these yj, in turn,
feed back on to yi, we need to take into account the additional effects that the short impact
of xi exerts on yi through its impact on the level of democracy in other states.

This is analogous to the interpretation of the coefficient β for a covariate xt in a
time series model where we have a temporal lag of the dependent variable yt−1 on the right
hand side, for example:

yt = βxt + φyt−1 + εt.

In this equation, β indicates the immediate effect of xt on yt. But this will in turn affect
yt−1 in the following time period, and the long-run effect of xt must thus take into account
the part of the net effect that works through the autoregressive part or the estimated
coefficient for the impact of the lag yt−1. The long-run effect of xt will be β/(1− φ). In a
situation where φ is large, the long run effect β/(1− φ) can be substantially larger than β.

Continuing this analogy, imagine if we could increase the log of GDP per capita by
one unit in only a single country i, which would have an immediate impact on that
country’s level of democracy of β1. However, the model in Equation (2.1) implies spatial
dynamics with a feedback effect between countries, where country i’s level of democracy is
also held to have an effect on its neighbors’ level of democracy. Hence, an increase in
democracy that affects i’s level of democracy will then influence democracy in the
neighbors of j. Contemporaneously, in turn, the neighbors’ neighbors will also be affected,
throughout all connected countries. In general, all countries will have some neighbors, so
that eventually the influence of all countries will be affected. But note that Equation 2.1
includes democracy for all countries in the system y, so if the democracy level of other
countries connected to i increases, so will the level of democracy in i. In this way an
exogenous shock to one observation, such as our thought experiment, will have a
reverberating effect throughout the system with feedback among observations, and flow
through the system as a series of adjustments until it settles upon some new stable
equilibrium (Cressie 1993, Lin, Wu & Lee 2006).

Rather than focusing on the coefficient estimates for xi alone in a spatially lagged y
model, it is therefore important to consider the equilibrium effects. Unfortunately, the
long-run effect for the spatially lagged y cannot be stated in a form as simple as in the case
of the long-run effect in the presence of a temporally lagged y. We will return later for how
to characterize and estimate the equilibrium effect of covariates in a spatially lagged y
model. First, however, we turn to problems posed by the presence of the spatial lag of y on
the right hand side of the equation and the implied endogeneity problems related to
consistent estimation of the model in the ordinary least squares setup.
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The following section relies on matrix algebra and focuses on issues of estimation
and why a maximum likelihood estimator may be preferable to estimating the spatially
lagged y model. Since using the maximum likelihood estimator by itself does not require an
understanding of all the details in this section, readers who are not interested in issues of
estimation may skip the details in this section and proceed immediately to the next section.

2. Estimating the Spatially Lagged y Model

In a time-series model with a temporally lagged yt−1 on the right hand side, the
presence of the temporal lag yt−1 does not create problems for estimation with OLS,
provided there is no serial correlation in the residuals of the regression model. More
precisely, OLS with a lagged dependent variable does not create problems for estimation,
assuming the model is correctly specified. There has been considerable debate on the
merits of including lagged dependent variables, but this is a debate on whether certain
other assumptions of the data-generating process are reasonable. We refer to Keele & Kelly
(2006) for a discussion. However, whereas yt1 is predetermined at time t, the spatial lag of
y is simultaneous and based on y itself. This simultaneity creates problems when
estimating the spatially lagged y model. To understand why it is helpful to look at the
spatially lagged model in matrix algebra. Following the notation in Anselin (1988), the
spatially lagged y model can be expressed as:

Y = ρWy + Xβ + ε

ε ∼ N(0, σ2I)

where I represents the identity matrix (an n× n matrix with 1s on the diagonal and zeros
everywhere else) and ∼ N(0, σ2I) indicates that the errors are distributed normally with a
constant variance and that the cross products of the error covariance matrix are 0. If
ρ = 0, then there is no spatial dependence, and the first part on the right hand side cancels
out, leaving us with the standard classical regression model where OLS is appropriate.
However, if ρ 6= 0, we have simultaneity, and the OLS estimates will not converge to their
“true” values as the number of observations increases. Instead, the feedback or dependency
that is ignored by the OLS specification is likely to grow rather than be eliminated as the
size of the data frame grows. Actually, it depends explicitly on the size and exact form of
the connectivity matrix.

If using OLS to estimate the spatially lagged y model is problematic, what are the
alternative estimation methods? The spatially lagged y model can be estimated using
two-stage instrumental variable estimation, for example, using the exogenous variables X,
WX, and W2X as instruments for the spatial lag of y. We do not cover estimation by
instrumental variables in any detail here but instead focus on a suggested maximum
likelihood estimator for the spatially lagged y model, which will be consistent and
asymptotically efficient if the model is correctly specified. Although the OLS estimates of
the spatially lagged y will face problems with simultaneity due to the presence of Wy on
the right hand side, the properties of the MLE estimator hold only asymptotically, and the
size of the inconsistency or bias will depend on the specific circumstances in each
application. Franzese & Hayes (2007) explore the performance of different estimators
through Monte Carlo simulation and suggest that the OLS estimates of the spatially lagged
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y model in some settings can have smaller mean squared errors than the MLE estimator.
Small samples make it difficult to leverage the spatial formulation.

Maximizing the likelihood for the spatially lagged y model is complicated. To see the
complications, it is helpful to consider that the spatially lagged y model can be rewritten:

ε = y − ρWy −Xβ = (I− ρW)y −Xβ.

This in turn implies that we can write the estimator for β̂
′
:

β = (X′X)−1X′(I− ρW)y.

Finding the parameter estimates β for this model is difficult when ρ is unknown, as the log
likelihood function involves the determinant |I− ρW|. This is an nth order polynomial in
ρ, which must be evaluated at every iteration in the estimation procedure. However, Ord
(1975) showed that if W has eigenvalues (ω1, . . . , ωn), then

|ωI− ρW| =
n∏

i=1

(ω − ωi).

This in turn implies that

|I− ρW| =
n∏

i=1

(1− ρωi).

Ord suggested that the ωi of W can be found at the outset, prior to estimation of the rest
of the model.

Recall that the log likelihood function for the classical linear regression model,
assuming constant variances, is

lnL(β, σ2) = −N/2 ln(2π)−N/2 ln(2σ2)

−(y −Xβ)′(y −Xβ)/2σ2.

By contrast, the log likelihood function for the spatial lag model is

lnL(β, σ2, ρ) = ln | I− ρW | −N/2 ln(2π)−N/2 ln(2σ2)

−(y − ρW −Xβ)′(y − ρW −Xβ)/2σ2,

and, treating ωi as given prior to estimation, we can easily find the MLE estimator for the
spatially lagged y model by maximizing this function. We also need to ensure that the
coefficients do not lead to explosive feedback processes, which would cause the covariance
matrix to have a non positive definite character. Although alternative algorithms are
currently available, most implementations of the MLE estimator for the spatially lagged y
model still rely on Ord’s insight to eliminate a major part of the computational complexity.
In moving to the MLE, however, the basic assumptions change. In OLS, the errors are
normally distributed, but the data need not be. In the MLE for spatial models, the data
are assumed to be normally distributed.
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3. MLE Estimates of the Spatially Lagged Y Model of Democracy

In this section we present MLE estimates for the spatially lagged y model of
democracy and compare these with the OLS estimates of the same model.

We first show the code to implement this in R:

R code rhs<-sldv$gdp.2002/sldv$population
sldv.fit <- lagsarlm(democracy ~ log(rhs), data=sldv,

nb2listw(nblist), method="eigen", quiet=FALSE)
summary(sldv.fit)
moran.test(resid(sldv.fit),nb2listw(nblist))

This generates the results shown in Table 2.3. As one can see, this yields a higher
estimate of the coefficient for GDP per capita (approximately 1.0) than the OLS estimates
of the model (0.76), and a lower estimate of the ρ̂ parameter for the spatial lag of y (0.56)
than in the OLS estimates for the spatially lagged y model. Our key conclusions remain
the same regardless of estimation methods, in the sense that including a spatially lagged y
term notably improves the ability of the model to account for variation in democracy
across countries.

Table 2.3. MLE estimates of the spatially lagged y model.

β̂ SE(β̂) z-value

Intercept -6.20 2.08 -2.98
Ln GDP per capita 0.99 0.28 3.59
ρ 0.56 0.08 7.43

N = 158
Log likelihood (df=4) = -491.10

If we believe that the maximum likelihood estimator is generally more appropriate
than OLS estimates for the spatially lagged y, we might conjecture that the OLS estimates
underestimate the coefficient for GDP per capita and over-estimate the coefficient for the
spatial lag. This conjecture is not testable, since we do not know what the “true”
parameters might be and how closely our model resembles these, nor whether there are
“true” parameter values that even exist.

The Lagrange-Multiplier test for residual autocorrelation is the preferred test on
residuals from a spatial model. The test has a value of 2.1 with an associated probability of
0.147 in this example, allowing a clear rejection of a remaining first-order auto-regression
among the residuals. By comparison, the estimated Moran’s I for residual spatial clustering
produces the same result, as does the saddlepoint modification. The former has a standard
score −0.46 which also points toward a rejection of the notion of simple spatial correlation
among the residuals based on the same connectivity matrix W. If we examine the residuals
for remaining spatial patterns for the OLS with the spatially lagged y, we find considerable
evidence that the residuals still exhibit strong spatial clustering, with a Moran’s I of −0.17
and associated standard score of −3.21; saddlepoint estimates are virtually identical. A
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negative Moran’s I suggests a repulsive pattern among the residuals, lending some support
to our conjecture that the OLS estimates overestimate the impact of the spatially lagged y
and in this sense over-corrects for spatial dependence in assessing the effects of GDP per
capita. We emphasize that these autocorrelation tests of residuals should be used
cautiously because they are dependent on the weights matrix, which itself is subject to a
variety of plausible specifications in most instances. We return to this point below.

4. Equilibrium Effects in the Spatially Lagged y Model

With the MLE estimates for our the spatially lagged y model in hand, we explore
the equilibrium effects of GDP per capita on democracy. This requires taking into account
the implications a change in an independent variable in one state i will have on other
states. This leads through the connectivity matrix to a type of chain-reaction in other
states that would eventually return to influence yi via the spatially lagged y term.

Keep in mind that the spatially lagged regression model can be written in matrix
notation as:

y = Xβ + ρWy + ε.

Moving all terms that involve the dependent variable y to the left hand side, we get:

(I− ρW) y = Xβ + ε.

Solving this equation for y, and taking expectations, we then find that, in equilibrium, the
expected value for y will be:

E(y) = (I− ρW)−1 Xβ.

It is obvious that E(y) will reduce to Xβ only if ρ = 0. To determine the expected value of
yi or the equilibrium effect of x we must consider the spatial multiplier (I− ρW)−1. This
multiplier tells us how much of the change in xi will “spill over” onto other states j and in
turn affect yi through the impact of y in the spatial lag. This is similar to the Leontief
(1986) inverse used in input-output analysis to evaluate how change in demand in one
sector will influence total production in a multi-sectoral system.

Hence, to determine the equilibrium impact of a one unit difference for some
observation in xi we need to pre-multiply a vector ∆x(i), where the value for other units j
is held constant, by (I− ρW)−1 β. Since all states will have different degrees of
connectivities to other states and different degrees of higher order connectivities with
others, it follows that the impact of a given change in xi will depend on the particular
country changed. Imagine a situation where we have two disjoint regions without any
bridging ties. In such a case, a change in region 1 would impact other countries in region 1,
but these changes would have no effect on countries in region 2.

A useful way to illustrate the variation in equilibrium effects is to consider the
impact of a change for all different countries and examine the distribution of the country
specific estimates. In the example shown here, we have a mean equilibrium effect of 1.09,
which is about 10% higher than the short-run impact of the log of GDP per capita given
by the coefficient estimate β̂ of 0.99 in Table 2.3 itself. The individual country-specific
equilibrium effects range from a low of 1.03 (for Mongolia) and a high of 1.24 (for Papua
New Guinea), which is about 25% higher than the short-run effect for GDP per capita.



38 2. SPATIALLY LAGGED DEPENDENT VARIABLES

Clearly, we should be hesitant to make inferences about the effects of a covariate xi in a
spatially lagged y model without considering the spatial multiplier and the variation that
will exist across spatial units. Figure 2.1 displays a histogram of the estimated effects.

Equilibrium effects for ln(GDP per capita)
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Figure 2.1. Histogram of the equilibrium effects for ln GDP per capita.

To understand how one state’s GDP per capita affects the expected value of
democracy in other states, it is instructive to examine the full vector (I− ρW)−1 β∆x(i).
We use Russia as an illustration. Table 2.4 displays the ten highest values of
(I− ρW)−1 β∆x(i) based on Russia, the estimates for the spatially lagged y model
reported in Table 2.3, and the connectivities specified in W. As we see, the implied
equilibrium impact for Russia would be 1.09, which is close to the median of the equilibrium
impacts implied by the model. The values for the other states indicate that a change in
Russia would have implications for Russia’s neighbors in Asia and Europe. To see what
these estimates imply in substantive terms, recall that the coefficients for the estimated
impact pertain to the log of GDP per capita. A 10% change in the current GDP per capita
of Russia (i.e., $2,279) would only raise its own predicted value of democracy by little over
0.1 points on the POLITY scale. For the country with the largest equilibrium impact of
change in the GDP per capita value for Russia, the increase in the predicted value of
democracy would be only a little over 0.02 based on these estimates. This reinforces our
conclusion that even very large differences in the GDP per capita of one state would not
change the expected level of democracy around the world very much according to this
model, and the impact of ln GDP per capita is substantially lower in the spatially lagged y
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model taking into account the influence of the level of democracy in connected states than
the OLS results and treating the individual observations as independent of one another.

Table 2.4. Equilibrium impacts of log GDP per capita for Russia, 10 highest
values.

Country Impact

Russia 1.09
People’s Republic of Korea 0.24
Japan 0.24
Mongolia 0.24
Finland 0.22
Estonia 0.21
Norway 0.20
Lithuania 0.20
Latvia 0.120
Armenia 0.18

We show below code to construct such an experiment in abbreviated form, based on
the estimates for the spatially lagged y object shown above:

R code# Code to calculate equilibrium effect of changes in GDP per capita

# Create vector to store the estimate for each states
ee.est <- rep(NA,dim(sldv)[1])

# Assign the country name labels
names(ee.est) <- sldv$tla

# Create a null vector to use in loop
svec <- rep(0,dim(sldv)[1])

# Create a N x N identity matrix
eye <- matrix(0,nrow=dim(sldv)[1],ncol=dim(sldv)[1])
diag(eye) <- 1

# Loop over 1:n states and store effect of change in
# each state i in ee.est[i]
for(i in 1:length(ee.est)){

cvec <- svec
cvec[i] <- 1
res <- solve(eye - 0.56315 * wmat) %*% cvec * 0.99877
ee.est[i] <- res[i]

}

# Russia example of impact on other states (observation 120)
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cvec <- rep(0,dim(sldv)[1])
cvec[120] <- 1

# Store estimates for impact of change in Russia in rus.est
eye <- matrix(0,nrow=dim(sldv)[1],ncol=dim(sldv)[1])
diag(eye) <- 1
rus.est <- solve(eye - 0.56315 * wmat) %*% cvec*0.99877

# Find ten highest values of rus.est vector
rus.est <- round(rus.est,3)
rus.est <- data.frame(sldv$tla,rus.est)
rus.est[rev(order(rus.est$rus.est)),][1:10,]

The previous results from the OLS model suggested that GDP per capita had a
relatively limited effect on expected level of democracy. The MLE results for the spatially
lagged y model in Table 2.3 also suggest a relatively small immediate impact of GDP per
capita. When we explored the long-run equilibrium effects of changes in GDP per capita
we found a somewhat larger but still quite limited impact. What do the coefficients in
Table 2.3 imply about the relationship between a country’s expected democracy level and
that of its neighbors? Figure 2.2 shows graphically the expected covariation implied by the
model. In this figure we plot the expected value of the dependent variable (democracy, y)
as a function of the level of democracy in neighboring states (the spatial lag, ys) and the
independent variable, logged GDP per capita. It is clear from this contour mapping that
the impact of GDP per capita is weak, but the spatial component has a strong impact on a
state’s expected level of democracy.

The expected level of democracy suggested by the model varies dramatically for a
country, conditional on a constant GDP per capita. A country at the median GDP per
capita with consistently autocratic neighbors (i.e., ys

i =-10) would have an expected
democracy score of about −4, while its expected level of democracy would be almost 7 if
all of its neighbors are democracies (i.e., ys

i =10). As such, although GDP per capita
appears to have a relatively limited ability in accounting for variation in democracy in
these empirical results, there is a very close relationship between a country’s level of
democracy and that of its neighbors.

Another way to think of these results is in terms of what would happen if democracy
changed due to features not in the systematic part of the model (e.g., a shock in yi for
some country i) along with the short term impact that this would have on the predicted
level of democracy of other states j, ŷj implied by the model. For example, consider what
would happen if China were to become a democracy (i.e., a Polity score of 10), as opposed
to to its current value of −7. What would the implications be for other states, using the
estimated spatial model as our guide? Obviously, this will depend on not just ρ̂, but also
the structure of the connectivity matrix W used in constructing the spatial lag. Recall that
since W is row-standardized, a change in China will carry less weight for countries that
have many connected observations than countries with few neighbors. Table 2.5 displays
the immediate impact on their democracy score of China being a 10 on the 18 neighbors of
China. Taiwan, North Korea, and Mongolia, which each have China as one of their three
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Figure 2.2. Plot of expected democracy by variation of mean democracy level
among neighbors and the logged GDP per capita.

neighbors in W, would be expected to see an increase in their democracy score of almost
two points, while the immediate impact for Russia, with 20 neighboring states, would be
only 15% of the direct impact for the states with China as one of their three neighbors.

We reproduce below code to examine the impact of a change in y for China on other
states in the system, based on the estimates for the spatially lagged y object shown above:

R code# Impact of change in $y$ to 10 in China
# China is observation 32
cvec <- rep(0,dim(sldv)[1])
cvec[32] <- 10
# Store estimates of change in China in chn.est
chn.est <- c(cbind (0, 0, wmat%*%cvec) %*%

c(summary(sar.fit)$Coef[,1],summary(sar.fit)$rho))
chn.est <- round(chn.est,3)
# Find all states where non-zero impact
chn.est <- data.frame(sldv$tla,chn.est)
chn.est <- chn.est[rev(order(chn.est$chn.est)),]
chn.est[chn.est$chn.est>0,]

5. Spatial Dependence in Turnout in Italy

Shin (2001, 2002) and Agnew (2007a, 2007b) have studied the geographical
distribution of political activity in Italy over the past several decades and have suggested
important spatial dynamics in turnout and voting outcomes. We utilize their data to
explore a simple version of the idea that the spatial variation in turnout rates can be
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Table 2.5. Effects on predicted democracy ŷ if China had a POLITY score of 10.

Country impact

Taiwan 1.88
North Korea 1.88
Mongolia 1.88
Nepal 1.41
Bhutan 1.41
Pakistan 1.13
Laos 1.13
Kyrgyzstan 1.13
Bangladesh 1.13
Uzbekistan 0.94
Thailand 0.94
Myanmar/Burma 0.94
Tajikistan 0.80
India 0.80
Vietnam 0.80
Afghanistan 0.80
Kazakhstan 0.70
Russia 0.28

accounted for by by the geographic distribution of wealth and income in Italy. We use data
from the Italian National Elections in 2001 and data on GDP per capita taken from each
province in 1997. These are available for each of the 477 collegi, or single member districts
(SMD, hereafter) that existed during this election.

5.1. Maps of the Main Variables. We illustrate the maps of the geographical
distribution of voting turnout and GDP per capita as step one in our spatial analysis.

Turnout is highest in the North, especially in the far North, around Milan, and in
the Emilia-Romagna and Tuscany. Rome and Venice also have high turnout rates. In
Modena, for example, turnout is over 90%. By contrast, turnout hovers in the mid-teens in
Sicily; even in the outskirts of Naples voting turnout is only about 60%. The richest part of
Italy, in terms of GDP per capita is Lombardy. Income in the richest Northern SMDs is
about 1.5 times as large as per capita income in the poorest SMDs in the South. Clear
clustering of both turnout and GDP per capita is apparent in this set of heuristic maps.

5.2. Calculate the Moran’s I Statistics. In this section we assess spatial
clustering in turnout and GDP per capita more formally using the Moran’s I statistic. As
a first cut at the spatial connectivities in Italy, we simply used the nearest neighbor
distances for 50 kilometers. We calculated the centroids of each district and then
determined whether it was joined to the centroids of other districts by a distance of 50 km
or less. By way of summary, we found that two Milan Districts were connected to 54
others: ten and six. Eight SMDs were connected only to a single other district, but this
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Figure 2.3. Voting Turnout by Collegio in Italy.

mainly had to do with edge effects: an example is Trentino-Alto Adige, hidden in the Alps
near the Brenner pass and Austria. On average, however, SMDs are linked to about 17
other districts by this 50 km rule.

Summaries can be easily obtained in R by a summary of the neighborhood object.
As an example, we created these linkages by the following code:

R codetr <-readShapePoly("turnout",
IDvar="FID_1", proj4string=CRS("+proj=robin +lon 0=0"))

dnn50km <- dnearneigh(coordinates(tr), 0, 50000, lonlat=F)
summarize(dnn50km)

There are two types of Moran’s calculations, one done under the assumption of
randomization and the other done using a normality assumption. Regardless of whether we
assume randomization or normality, the Moran’s I statistic indicate strong spatial
patterning in these data. GDP per capita data has Moran’s I of 0.86 for both, under these
two tests, respectively; turnout has similarly high values: 0.79 (for both). All of these
values are unusual, and they suggest a strong spatial patterning of both GDP per capita
and turnout.

5.3. Regression Analysis. Turnout is clearly likely to be associated with differences
in GDP per capita, but can the spatial clustering in turnout be accounted for by
geographical variation in GDP alone? The simple model examined here is that turnout is a
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Figure 2.4. Per capita GDP in Italy, taken from 1997 data.

function of GDP per capita. This is first examined by a standard least squares estimation,
which is presented in Table 2.6. The standard results indicate that income is a strong
predictor of voting patterns in Italy, and that a unit difference in GDP per capita (in
millions of Lire) is associated with about 14% voting turnout. However, the Moran test for
simple spatial patterns the residuals has a value of 0.47, suggesting that the spatial pattern
has strongly affected the regression estimates, and, thereby, the residuals.

Table 2.6. OLS regression of voting turnout on GDP per capita, logged in
Italy in 1997.

β̂ SE(β̂) t-value

Intercept 35.30 2.21 15.96
Ln GDP per capita 13.46 0.65 20.84

N = 477
Log likelihood (df=3) = -1387.57
F = 434.4 (df1 = 1, df2 = 475)

We then examined a spatially lagged y regression model, with the following code:
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R code ldv.fit <- lagsarlm(turnout ~ log(gdpcap), data=shin,
nb2listw(dnn50km), method="eigen", quiet=FALSE)

summary(sldv.fit)

The results are illustrated in Table 2.7. The effects of GDP per capita on turnout
are less “strong” than the OLS results shown above, but more plausible. They suggest a
smaller impact of income, but a strong impact nonetheless. However, the spatial lag
variable has considerable salience.

Table 2.7. Spatial regression of voting turnout on GDP per capita, logged
in Italy in 1997.

β̂ SE(β̂) t-value

Intercept 4.70 1.66 2.80
Ln GDP per capita 1.77 0.48 3.66
ρ 0.87 0.02 36.7

N = 477
Log likelihood (df=3) = -1193

5.4. Equilibrium Analysis. Following the approach above it is simple to calculate
the equilibrium values for each of the 477 SMD, i.e., the expected values given the model.
We do not present these here but instead conduct a simple experiment in which we
hypothetically double the GDP per capita of one of the poorest areas in Italy: Reggio
Calabria-Sbarre. In so doing, we calculate the difference in the expected value under this
“scenario” versus the expected value given the model and the observed data. The
differences for most SMDs are non-existent, but in 15 other SMDs, there are differences in
expected voting turnout of 1% or more as a result of this hypothetical change in the GDP
per capita of a single SMD. As expected, the biggest changes are in neighboring SMDs.
Figure 2.5 shows the resulting distribution of implied differences in turnout in Italy.

We show below code to construct this experiment abbreviated form for Reggio
Calabria-Sbarre (observation 432), based on the spatially lagged y object previously
created above:

R code
# Extract estimated rho
rho <- coef(sldv.fit)[3]

# Extract estimated beta
beta <- coef(sldv.fit)[1:2]

# Create a X matrix
X <- cbind(1,log(shin$gdpcap))

# Create an alternative X matrix, changing value for
# Reggio Calabria-Sbarre (obs 432)
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Xs <- X
Xs[432]<- log(35)

# Create an identity matrix
I <- diag(length(shin$gdpcap))

# Find equilibrium effect by looking at
# the difference in expected value for the
# the two X matrices
Ey <- solve(I - rho*wmat)%*%(X%*%beta)
EyS <- solve(I - rho*wmat)%*%(Xs%*%beta)
dif <- EyS-Ey

% Turnout Increase

17
6
1
0

Figure 2.5. Increases in expected turnout as a function of a doubling of GDP
per capita in a single, poor Collegio (Regio Calabria - Sbarre) in the south of
Italy.

6. Using Different Weights Matrices in a SLDV model

We illustrate the impact of spatial weights matrices with reference to data on the
U.S Presidential Election in 2004.3 These are easily extracted to an XML table and

3The 2004 election data are available at http://www.fec.gov/pubrec/fe2004/federalelections2004.
pdf.

http://www.fec.gov/pubrec/fe2004/federalelections2004.pdf
http://www.fec.gov/pubrec/fe2004/federalelections2004.pdf
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converted to a csv file. To simplify our task we do not consider the cases of Alaska and
Hawai’i, as these are sufficiently distant from all other states to create some challenges in
the analysis of regional data. The major variable we are interested in is the share of the
total vote received by George W. Bush and John F. Kerry in each of the 48 contiguous
states, plus the District of Columbia. For the purposes of this exercise, we ignore the
write-in votes from each state. We construct a ratio of the Bush votes to the Kerry votes
and use this as the dependent variable.

To answer the question of how much autocorrelation there might be among these
data in the context of regional patterns, we create several measures of the spatial
connectivities among these 49 political and geographical units. The first such measure is
simply a measure of the contiguity of states. In this context, Washington state is
neighbored by Idaho and Oregon, because they share borders. Colorado shares borders
with New Mexico, Arizona, Utah, Wyoming, Nebraska, Kansas, and Oklahoma. At the
other end of the spectrum, Maine has only one border. These are illustrated in Figure 2.6.

Figure 2.6. Map of 48 U.S. states and their first order connectivities, based
on shared borders using Queen contiguity.

Sample code to construct this map is provided below:

R code
library(foreign);library(maptools);library(network)
library(spdep);library(sp);library(rgdal)
setwd("...")

# read in 2004 presidential votes
...
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# read in shape files for 48 US States plus District of Columbia
# will create a MAP OBJECT
usa.shp <- read.shape("48_states.shp") # use equal area projection (Robinson)

usaall<-merge(usa.shp$att.data, presvote,
by.x = "STATE_NAME", by.y = "State",
sort = F)

# Create a distance matrix from original polygon shape file
tr <- readShapePoly("48_states.shp",

IDvar="ObjectID", proj4string=CRS("+proj=robin +lon 0=0"))
centroids<-coordinates(tr)

# Create Polygons in a SPATIAL OBJECT
us48polys <- Map2poly(usa.shp,

region.id = as.character(usa.shp$att.data$STATE_NAME))

# Create neighbors, list, and matrix objects from polygon centroids
us48.nb <- poly2nb(us48polys,

row.names = as.character(usa.shp$att.data$STATE_NAME))
us48.listw <- nb2listw(us48.nb, style = "B")
us48.mat<-(nb2mat(us48.nb,style="B"))

# plots the network among the centroids
colnames(us48.mat)<-rownames(us48.mat)<-usa.shp$att.dat$STATE_ABBR
usa<-network(us48.mat,directed=F)

set.seed(123)
# plot network first; then add state boundaries
plot.network(usa1,displayisolates=T,displaylabels=F,

boxed.labels=F,coord=centroids,label.col="gray20",
usearrows=F,edge.col=rep("gray60",190),
vertex.col="gray30",edge.lty=1)

plot(us48polys, ... ,add=T)

Next we turn to a mapping of the ratio of votes received by George W. Bush and
John F. Kerry in each state during the 2004 Presidential Election. As shown in the
accompanying map (Figure 2.7), there appears to be as strong geographical patterning of
the votes by state during the 2004 Presidential Elections.

R code
# now plot the Bush:Kerry vote ratio
bk<-usaall$Bush/usaall$Kerry
# set up five categories and assign colors
breaks <-round(quantile((bk), seq(0,1,1/5), na.rm=TRUE),1)
cols <- brewer.pal(length(breaks), "Greys")

# use findInterval to color states by bk variable
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Figure 2.7. Map of 48 U.S. states and their first order connectivities, based
on shared borders using Queen contiguity.

plot(us48polys, ... )
plot(us48polys,...,col=cols[findInterval(bk, breaks, all.inside=T)])
legend(x = c(-125, -115), y = c(27, 32), legend = leglabs(breaks),

fill = cols, bty = "n")

Moran’s I also shows numerical evidence of this patterning, as does Geary’s C.

Table 2.8. Autocorrelation in the Bush-Kerry vote totals during the 2004
Presidential election.

Moran’s I Standard Score Weights Schema

0.39 4.7 bordering states
0.49 5.7 nearest 4 neighbors
0.30 7.0 nearest 12 neighbors

Geary’s C Standard Score Weights Schema

0.65 -2.7 bordering states
0.65 -3.6 nearest 4 neighbors
0.69 -5.1 nearest 12 neighbors

The average Gross State Product (akin to GDP) is measured by the Bureau of
Economic Analysis, part of the U.S. Department of Commerce. The most recent annual
data are available at http://www.bea.gov/bea/newsrelarchive/2006/gsp1006.xls,
which also includes the growth rate of GSP over the period from 1997-2004. These data

http://www.bea.gov/bea/newsrelarchive/2006/gsp1006.xls
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characterize the vibrancy of the local, state economy in the seven years prior to the 2004
election. We use these data as a covariate to explain votes in the 2004 Presidential Election.

We set up two basic spatial connectivity matrices, one based on Queen contiguity,
the other based on the four nearest neighbors. A regression with a spatially lagged
dependent variable was estimated for each of the contiguity codings. The results are
presented in Table 2.9.

Table 2.9. Spatial regression of ratio of Bush to Kerry votes by state in the
2004 U.S. Presidential elections on GDP growth rates (1997-2004) in each
state.

Queen Contiguity β̂ SE(β̂) t-value

Intercept 0.86 0.21 4.00
GDP growth rate -0.05 0.06 0.85
ρ 0.09 0.02 20.4
N = 49
Log likelihood (df=3) = -25.63

4 Nearest Neighbors β̂ SE(β̂) t-value

Intercept 0.63 0.23 2.72
GDP growth rate -0.06 0.05 1.04
ρ 0.60 0.12 18.4
N = 49
Log likelihood (df=3) = -25.19

The empirical results suggest that states with a higher growth rate in GDP will
have relatively fewer votes for George W. Bush and relatively more votes for John F.
Kerry. For the case of contiguity coding, there is evidence of a weak, positive spatial
correlation (0.09), while the spatial weight encoding that uses the four nearest neighbors
shows a stronger level of positive correlation in the Bush-Kerry vote ratio (0.60). These
two different estimations not only produce different results in the standard regression
output tables, but more importantly will result in equilibrium values that are substantially
different. As shown in Figure 2.8 the distributions of equilibrium effects for these two
different weighting schemes are quite distinct, even though they are positively correlated
with one another. The simple contiguity of borders has an mean effect in equilibrium that
is more modest (−0.15) than is obtained using the nearest four neighbors (−0.35). The
bottom line of this simple example is that the weights matrix is a very important aspect of
spatial analysis, and even relatively small perturbations in the weights matrix will have
salient consequences in the empirical results.

7. The Spatially Lagged Dependent Variable vs. OLS with Dummy Variables

Social scientists often recognize that there is considerable heterogeneity between
different regions of the world, and that the country specific covariates included in their
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Figure 2.8. Posterior distribution of equilibrium effects of spatially lagged
dependent variable with different weighting schemas.

regression model are unable to account adequately for this spatial variation. A common
way to address spatial heterogeneity is to include dummy variables for different
geographical regions. Such dummy variables will essentially fit separate intercepts for
different geographical regions, thereby allowing for taking into into account fixed, mean
differences in the dependent variable y across discrete regions. This is by far the most
common approach for addressing regional heterogeneity in applied work, and social science
is replete with models in which “region” categories are included as dummy variables.
Moreover, such models are becoming more common as analysts are increasingly concerned
that pooled OLS estimates may fail to take into account important region specific
differences.

For example, Lee (2005), in a study examining the impact of democracy and the
size of the public sector on income inequality, fits regional dummy variables for Africa,
Asia, and Latin America, and he argues that the latter two regions appear to differ notably
from the reference category (OECD) over and beyond what can be accounted for by other
country specific right hand side variables in the model. In the context of studies of
democracy, Burkhart & Lewis-Beck (1994) estimate models where they consider
heterogeneity in levels of democracy across different world system positions through
dummy variables, distinguishing between countries in the core, periphery, and
semi-periphery of the world economy.

Models with regional dummy variables are clearly popular in the social sciences and
provide an alternative to the spatially lagged y model. We first present an alternative of
the original OLS model, adding regional dummy variables, and then comment on the
relationship between this model and the spatially lagged y model. Table 2.10 presents a
model, with dummy variables for countries in Latin America & the Caribbean, Europe,
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Sub-Saharan Africa, Middle East & North Africa, Asia, and Oceania. The omitted region,
or reference category, is North America (i.e., the USA and Canada). The coefficient
estimate for the different region indicates the predicted difference in level of democracy,
holding GDP per capita constant, for a country in a given region relative to North
America. Latin America & the Caribbean, Europe, and Oceania seem to have levels of
democracy on average essentially indistinguishable from North America, while Sub-Saharan
Africa and Asia and, in particular, the Middle East and North Africa tend to have much
lower lever average levels of democracy. We also note that the coefficient estimate for the
log GDP per capita is much lower here than in the case of the OLS model treating all
countries as independent of one another (i.e. 1.68). In fact, the coefficient estimate for the
log of GDP per capita in this model is quite similar to the average of the equilibrium
impact found for the spatially lagged y model above (i.e., 1.09). This lends some support
to the argument that the pooled OLS disregards a great deal of regional heterogeneity and
that controlling for differences across regions through fitting dummy variables helps
address the implications of regional heterogeneity, as well as the implications for
overestimating the impact of GDP per capita.

Table 2.10. Estimates of model with regional dummy variables.

β̂ SE(β̂) t-value

Intercept -1.89 5.06 -0.37
Ln GDP per capita 1.15 0.34 3.39
Latin America & the Caribbean 0.09 3.84 0.02
Europe -0.41 3.74 -0.11
Sub-saharan Africa -4.71 3.97 -1.19
Middle East & North Africa -11.77 3.85 -3.05
Asia -5.97 3.92 -1.52
Oceania 0.90 4.72 0.19

N = 158
Log likelihood (df=8) = -477.52
F = 18.65 (df1 = 7, df2 = 150)

Is the regional dummy approach a suitable alternative to the spatially lagged y
model? One possible way to answer this question would be to look at the parsimony of the
two models. Although the OLS with dummy variables has a somewhat higher
log-likelihood, it achieves this by fitting 6 new parameters, or 5 more than the spatially
lagged y model. Moreover, the regional dummy variable model by itself does not contain a
generative story of how these regional differences originate, but simply fits separate
intercepts based on the observed variation across regions. If one of the members of a region
where to see a change in its level of democracy as a result of a change in its GDP per
capita, the predicted values of the other countries would not change since the regional
differences are treated as fixed and countries do not influence one another. By contrast, the
spatially lagged y model fits only one additional parameter, which can be interpreted



7. THE SPATIALLY LAGGED DEPENDENT VARIABLE VS. OLS WITH DUMMY VARIABLES 53

substantively as the impact of the level of democracy y among connected countries on a
country’s level of democracy. If one is not concerned about parsimony, but simply wants to
maximize fit, it would obviously be possible to fit a spatially lagged y model with regional
dummy variables. In this case, this model still suggests residual spatial clustering, in the
sense of returning a statistically significant and positive estimate of ρ̂ = 0.25. Fitting a
spatially lagged y model with regional dummy variables requires the analysts to reconcile
the assumption of fixed regional differences with the implied endogeneity of the spatially
lagged y specification. In many instances, it may be difficult to estimates separate
parameters for regional dummies and the spatially lagged y, if the connectivities in W are
very “similar” to the regional demarcations, in ways similar to the problem of collinear
regressors. Furthermore, note that the regional dummies by construction assign countries
to discrete, or proper name regions, whereas the spatially lagged y term in this case is
based on a connectivity matrix W where the connectivities are specific to each country.
Compared to the discrete specification, the country-based connectivity specifications has
the advantage of not forcing countries quite far apart geographically such as Greece and
Ireland of belonging to the same cluster, and not forcing countries that span several
commonly defined geographical regions such as Turkey and Russia to belong to one region
only.

Even if we believe that mutually exclusive regions are an appropriate manner to
specify connectivities between observations, the regional dummy variable specification may
not generally be an adequate alternative to the spatially lagged y model and entails
additional assumptions that we find overly restrictive. To see this, consider a regression
with k different dummy variables Dk where y = b1D1 + . . . + bkDk + e. Unlike the
connectivity list or matrix where i is not included as a neighbor of itself, each region here
includes both i and all of its neighbors. But if the number of cases in each of the regions
are large, then it is possible to show that Wy ≈ b1D1 + . . . + bkDk. This means that the
dummy variable regression can be rewritten as y = b1D1 + . . . + bkDk ≈ Wy + e. In this
sense, the dummy variable regression model is a special case of the spatially lagged y
model, which simply assumes a ρ = 1 rather than estimating this parameter empirically
(Lin, Wu & Lee 2006). In other words, the regional dummy variable assumes that all
observations within every region are homogenous and interconnected, whereas the spatially
lagged y model allows the degree of similarity to be estimated. Moreover, the spatially
lagged y model can easily handle cases with a wide range of forms of connectivity, while
the dummy variable approach assumes disjoint clusters where every unit of analysis within
a given cluster is connected to everyone else and no links between clusters; nor can units
belong to a variety of different clusters.





CHAPTER 3

Spatial Error Model

1. Introduction

In Chapter 2 we examined the spatially lagged dependent variable model, in which
“neighboring” values of the dependent variable exert a direct effect on the value of the
dependent variable itself. Although this is probably the most common, and perhaps the
most generally useful way to think about spatial dependence, it is not the only possible
way to represent spatial dependence in a linear model with a continuous dependent
variable. In this chapter, we examine an alternative conception in which the spatial
dependence enters through the errors, rather than through the systematic component of
the model. Such a model is typically called the spatial error model. We also examine an
important possible extension of spatial regression models to distance concepts based on
metrics other than geography in the context of the spatial error model.

2. The Spatial Error Model

Whereas the spatially lagged dependent variable model sees spatial dependence as
substance, in the sense that the yi is influenced by the value yj for other countries (j 6= i),
the spatial error model treats spatial correlation primarily as a nuisance, much like
statistical approaches often treat temporal serial correlation as something to be eliminated
and solely as an estimation problem. This approach generally focuses on estimating the
parameters for the independent variables of interest in the systematic part of the model,
and essentially disregards the possibility that the observed correlation may reflect
something meaningful about the data generation process. Instead of letting yi affect yj

directly, the spatial error model assumes that the errors of a model are spatially correlated.
There are myriad ways in which this could be specified. We focus on a simple one that is
based on a coding of the spatial regime in terms of spatial weights; other important
approaches focus on geostatistical covariance structures, but we do not examine these in
this monograph. Following the earlier notation, if we let wi denote the vector of W
indicating how close other units j 6= i are to i, we can write the spatial error model as
follows:

yi = xiβ + εi + λwiξi.

Here we have decomposed the overall error into two components, namely ε, a spatially
uncorrelated error term that satisfied the normal regression assumption, and ξ, which is a
term indicating the spatial component of error term. The parameter λ indicates the extent
to which the spatial component of the errors ξ are correlated with one another for nearby
observations, as given by the vector of connectivities wi. Alternatively, we can state the

55
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spatial error model in matrix form, based on the terms previously defined in Chapter 2:

y = Xβ + λWξ + ε

ε ∼ N(0, σ2I).

If there is no spatial correlation between the errors for connected observations i and
j, the spatial error parameter λ will be 0, and the model reduces to the standard linear
regression model where the individual observations are independent of one another, and we
can proceed to estimate the model by ordinary least squares in the conventional manner.
However, if the spatial error parameter λ 6= 0, then we have a pattern of spatial
dependence between the errors for connected observations. This could simply be
coincidental, or it could reflect other kinds of mis-specifications in the systematic
component of the model, in particular omitted variables that are spatially clustered. Social
scientists typically expect to see positive spatial correlation. This implies the clustering of
similar values, i.e., the errors for observation i tend to vary systematically in size with the
errors for other, nearby observations j, so that smaller/larger errors for i would tend to go
together with smaller errors for j. Such clustering of residuals violates the assumption that
the error terms are independent of one another.

What are the consequences of spatial correlation among the error terms, and what
are the implications if we run an OLS assuming that observations are independent? If
λ 6= 0, then the OLS coefficient estimates ignoring the spatial correlation would still be
unbiased. However, the standard errors of the coefficient estimates would be wrong. Recall
that OLS relies on an estimate of the variance that assumes independent observations. If
this is not correct, then the OLS estimate of the variance σ̂ will tend to underestimate the
actual variance, in a manner analogous to the case of serially correlated errors over time.
This occurs because the estimate of the variance disregards the correlation between the
error terms for nearby observations. Moreover, the estimated coefficients are not
necessarily efficient estimates or “close” to the true values of the impact of the features
that we are interested in. We will return to estimation of the spatial error model later, but
we first turn to its interpretation and relationship to the spatially lagged y model.

The spatial error model and the spatially lagged y model may seem superficially
similar, as each suggests spatial dependence between observations. However, the two model
specifications actually have very different substantive implications. The spatially lagged y
is a simultaneous model with feedback between the observations: the value of yi influences
the value of yj—which will in turn influence the value of yk, which in turn influences the
value of yi. As we saw in Chapter 2, different values of the independent variable for one
observation i, will propagate through the connected observations, and the net impact will
depend on the impact of these differences on other connected observations, via the spatially
lagged y term. By contrast, in the spatial error model, dependence enters in the
specification only through the error terms. The absence of the spatially lagged y term here
implies that differences in the independent variables in i do not have effects on outcomes in
observations connected to i. Thus, in a spatial error model specification, the observations
are related only due to unmeasured factors that, for some unknown reason, are correlated
across the distances among the observations.
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3. MLE Estimation of the Spatial Errors Model

In the case of the the spatially lagged y model, the coefficient ρ for the spatial lag is
a parameter explicitly of interest on the right hand side. In the spatial error model, λ is a
coefficient indicating the correlation of the residuals, rather than a right hand side
covariate of explicit interest. If we are only interested in estimating the β̂ for x, and
disregard λ altogether, OLS estimates will be unbiased and consistent for the spatial error
model, unlike what was the case for the spatially lagged y model. However, the reported
standard errors will be incorrect and the estimated coefficients are not necessarily efficient.
These problems can be addressed by using generalized least squares estimation techniques
similar to generalized least squares estimates often used in the presence of temporal
correlation, where one first estimates the serial correlation and then seeks to transform the
data and purge the serial correlation so that the normal regression assumptions are
satisfied. This is typically done using a maximum likelihood estimator based on the
eigenvalues of the spatial connectivity matrix.

The log-likelihood function for the spatially lagged error model is

lnL(β, σ, λ) = ln | I− λW| −N/2 ln (2π)−N/2 ln
(
σ2

)
− (y − λWy −Xβ + λWXβ)′ (y − λWy −Xβ + λWXβ) /2σ2.

As in the case of the log-likelihood of the spatially lagged y model, we run into
complications over the log of the determinant |I − λW|, which is an nth order polynomial
that is cumbersome to evaluate. However, we can again rely on Ord’s (1975) result that
this determinant can be written as a function of the product of the eigenvalues ωi of the
connectivity matrix W, |I − λW| =

∏
(1− λωi). Because the eigenvalues ωi can be

determined prior to optimization, this step can be separated from the likelihood evaluation
for the other parameters (Anselin 1988, Bivand 2002). These estimators are implemented
in common software options, including spdep in R.

4. Example: Democracy and Development

To show an actual example of the spatial error model in practice, we first revisit our
example from Chapter 2 on democracy and wealth. We use the same data as in Chapter 2
and refer to this for all details on variable construction. Table 3.1 displays three sets of
estimates for the democracy and income example. The third column of results report the
estimates for a model allowing for spatially correlated error, while the first and second
column of estimates repeat the OLS and spatially lagged y model estimates from Chapter 1.

Code to estimate the spatial error code in R is straightforward:

R code
# data and variables as employed in chapter 2. sem.fit <-
errorsarlm(democracy ~ log(rhs), data=sldv,

nb2listw(nblist), method="eigen", quiet=FALSE)
summary(sem.fit)
logLik(sem.fit)
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Table 3.1. Democracy and logged GDP per capita.

Variable OLS SLDV SEM

β̂ SE(β̂) t-value β̂ SE(β̂) z-value β̂ SE(β̂) z-value

Intercept -9.69 2.43 -3.99 -6.20 2.08 -2.98 -7.49 3.07 -2.44
Ln GDP per capita 1.68 0.31 5.36 1.00 0.28 3.59 1.39 0.38 3.66

ρ 0.56 0.08 7.43
λ 0.58 0.08 7.60

N 158 158 158
DF 1 2 2
Log likelihood -513.62 -491.10 -491.53

As we see in Table 3.1, the coefficient estimate for the effect of logged GDP per
capita is considerably larger in the spatial error model than the corresponding coefficient
for the spatially lagged y model, albeit not as large as the coefficient estimate that we see
in the non-spatial OLS model. The intuition here is that the OLS model is likely to
overestimate the immediate impact of GDP per capita, as it does not take into account the
spatial clustering in democracy and GDP per capita among neighboring countries. In that
sense the estimate is also less precise, and we can think of the spatial lag as an omitted
variable in the OLS model assuming independent observations. By contrast, the spatial
error model corrects for the positive spatial correlation in GDP per capita and democracy,
and this correction reduces the estimated coefficient for the impact of GDP. However, the
spatial error estimates assume a model where the only spatial dependence between
observation stems from the errors or excluded factors not in the systematic component of
the model. By contrast, in the spatially lagged y model, some of the net impact of an
increase in GDP per capita of country i will be realized through the feedback effect that
the immediate effect on i will exert on its neighbor j and its impact on i through the
spatially lagged term, as the resulting impact of the democracy score will influence other
countries and feed through the system until some equilibrium is reached. Hence, the
estimated coefficient for GDP per capita in the spatially lagged y model will seem to be
smaller than the spatially correlated error model, as it reflects the immediate impact rather
than the long-run, net “equilibrium” effect implied by the model.

5. Spatially Lagged y vs. Spatial Errors

Since the two spatial parameters, ρ and λ, here are large and vastly greater than
their standard errors, we can safely conclude that there is considerable spatial dependence
in these data and that a standard OLS regression that assumes independent observations
will be misleading. However, this leaves us with the question of what is the better model,
the spatially lagged y or the spatially correlated error model? It is difficult to discriminate
between the spatially lagged y and a spatial error model purely on statistical grounds. The
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two models are not nested, so it is not possible to see one as a subset of the other, as is
often the case with hypothesis testing where we impose additional restrictions on a model.
It is possible to use formal tests for comparing non-nested models.1 However, these will
often be inconclusive and unlikely to suggest strong support for one model over the other.
In this case, we can see that the log-likelihoods for the two models are very similar, as the
log-likelihood for the spatially lagged y model is only marginally smaller than that of the
spatially correlated error model. Since both models entail the same number of parameters,
there is no clear basis for saying that one is more parsimonious than the other, and hence
there is little empirical guidance to tell the two models apart in terms of fit to the data
alone. One approach to follow would be cross-validation or out-of-sample prediction tests,
but these approaches are beyond the scope of this monograph.

More importantly, whether the spatially lagged y model or the spatial error model is
most appropriate is really a prior theoretical question, which must be considered relative to
the goals of a specific research question. If we expect to see, or are interested in, feedback,
then the spatially lagged y model would seem a more appropriate model. In our democracy
example, it seems quite reasonable to expect that a country’s level of democracy is affected
by the extent to which other countries are democratic (see, e.g., Gleditsch 2002a, Gleditsch
& Ward 2007). By contrast, it seems much less plausible to assert there is no diffusion
effect from levels in other states per se, but rather some other omitted feature from the
systematic component that induces spatial correlation in the errors of the model. Hence, in
this case we believe that the spatially lagged y is more appropriate than the spatial error
model.

More generally, the spatial error model is probably less interesting for applications
in the social sciences, and in our view, the spatial error model is appropriate primarily
when researchers believe that there is some spatial pattern that will be reflected in the
error term, but they are either unwilling or unable to make assumptions about the origin of
the error. The reason for this is that most models proposed in the social sciences do not do
a great job of specifying attributes of the individual observations that fully capture the
observed spatial clustering. As a result, there is still a lot of leverage in undertaking that
specification in the context of a spatially lagged dependent variable. If, however, we had an
area in which most of the important mechanisms were understood and fully specified in the
systematic component of the model, and if there were still some correlation in the error
terms, it would be useful to employ a spatial error model to correct for this residual
nuisance. On the whole, since social science modeling is typically characterized by little
attention to dependencies among the data, the spatial error can often provide a substantial
improvement.

6. Assessing Spatial Error in Dyadic Trade Flows

To illustrate a case where the spatial error model seems more appropriate, we
consider an application to the study of dyadic trade flow. A dyad is a pair of two units,
where the response may be some measure of trait or interaction between units, in our case
the volume of trade between two states i and j. In some cases, we may wish to distinguish

1See, e.g., Clarke (2001) for a discussion of non-nested tests.
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the direction of interaction between i and j, which could be denoted i → j for behavior of i
towards j. Alternatively, symmetric interactions might be denoted with a subscript i ↔ j.
A system of n units will give rise to n× (n− 1) directed dyads, or [n× (n− 1)]/2
undirected dyads if we do not distinguish the direction of flows or interaction between the
units. Outside our example of trade here, dyadic observations are very common in
international relations, where we may be interested in estimating how some feature affects
the likelihood of a particular event or behavior, such as conflict between two states i and j.

The conventional approach in dyadic analysis in international relations is to treat
interaction as a function of characteristics of dyads or the two units they are composed of,
and to take the individual dyads as independent of one another once we have taken into
account the relevant explanatory factors. The spatial error model can be useful in
addressing possible dependence between such dyadic observations.2

Gold-standard models of international trade have not changed substantially since
they were first introduced: they are based on an analogy to Newtonian models of gravity.
Trade is a function of the economic mass of the trading countries but is inversely
proportional to their “distance.” Existing empirical work has suggested a number of factors
likely to influence the extent of trade between states i and j. The workhorse of empirical
trade model is the so-called gravity model of trade, which postulates that the volume of
trade between two countries (Ti→j) should be proportional to the product of their mass, in
terms of the size of their economies (GDPi and GDPj) and population (Pi and Pj), and
the geographical distance separating the two states (Di↔j). The model is usually stated as
an additive model in logarithmic form:

log(Ti→j) = α + β1ln(GDPi) + β2ln(GDPj) + β3ln(Pi) + β4ln(Pj) + β5ln(Di↔j) + ε

where the “mass” coefficients (β1, . . . , β4) are expected to be positive and the distance
coefficient (β5) negative. Feenstra, Rose & Markusen (2001) and Rose (2004) provide
examples of recent applications.

This core gravity model has no political content, but many social scientists have
been interested in how political factors may influence trade flows. For example, Pollins
(1989a, 1989b) argues that political relations are likely to exert a strong influence on trade
volumes, as countries will be less likely to have high volumes of trade with countries with
which they have otherwise poor political relations, either because traders fear political
disruption or because governments will impose restrictions on trade with antagonistic
states. Morrow, Siverson & Tabares (1998) hold that democracies are likely to trade more
with other democracies, and that military conflict should be associated with less trade than
would otherwise be expected. Both empirical analyses suggest that these features influence
trade flows.

One issue that has received little attention in research on trade is the potential
problems that the dyadic observations may not be independent of one another. Although
there has been a great deal of research on the potential problems that subsequent
observations for the same dyad over time may not be independent (see, e.g., Beck &
Katz 1996), most studies have assumed that observations of different dyads at the same

2A more complete examination of these and other dependencies can be found in Ward & Hoff (2007) and
for binary dependent variables in Ward, Siverson & Cao (2007).
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point in time can be considered independent of one another. However, there are many
reasons to expect that this may not hold in the case of trade flows. Dyadic data will tend
to have a complex structure, since the same state will enter into a very large number of
dyads. First consider that the trade flows Ti→j and Ti→k cannot be considered independent
of one another because they share the same sender. Second, it will often be the case that
the flow from one state i to j (Ti→j) will be positively correlated with the reverse flow from
j to i Ti←j. Higher order dependencies are also often found in such data.3 Economists
typically average the values of Ti→j and Tj→i and analyze the decomposition of this
triangular matrix. Such procedures guarantee even more dependence among observations.
Moreover, it is widely known that the most reported trade data rely on estimates that
appear to be based on imputations from other dyadic flows (e.g., Rozanski & Yeats 1994).
Such imputations can induce serial correlation in the figures. For example, the trade data
reported by the World Bank shows significant divergences from the distribution one would
expect from Benford’s law of the distribution of first-digits, which is a common test for the
quality of data and possible evidence of made up figures.4

This is a case where the spatially lagged error model is appropriate, as we would
expect the error terms of particular dyads to be linked, rather than their observed trade
flows. The net volume will depend on the mass of the countries on the flows involved, but
conditioning on this alone will not take into account the variation of the errors due to
dyadic dependencies. We have previously talked about distance and connectivity in terms
of the geographical distance between two units. In this case, we have suggested a
dependence structure deriving from dyads sharing a common member, where the structure
of dependence is not “spatial” in the conventional sense. However, there is nothing that
precludes spatial ideas from being applied to non-geographical concepts of distance. In this
case, we can devise a weighting scheme where other dyads are considered connected to a
particular dyad i → j if they contain at least either i or j. See Beck, Gleditsch & Beardsley
(2006), Deutsch & Isard (1961), and Lofdahl (2002) for further discussion of alternative
concepts of “distance.”

For an empirical application, we consider data on trade among European and
African dyads from Gleditsch (2002b). Specifically we look at the exports from country i to
country j, denoted Ti → j. The samples for Africa and Europe provide an interesting
comparison with likely variation in the quality of the data, as we would expect the accuracy
of the European trade data to be much higher than the data available for African states,
given the differences in infrastructure and capacity for monitoring economic activities. All
the trade data in our examples are from 1998. In our sample, “observed” data in the sense
of trade flows reported by the International Monetary Fund and other international

3Wasserman & Faust (1994) provide an overview of the triadic implications in such dyadic data, a staple of
social network analysis.
4The first-digit law, named after physicist Frank Benford, states that the leading digit in data will follow a
law where 1 will be the most frequent leading digit and larger numbers will become successively less common,
or more precisely, the frequency of a digit p is closely approximated by log(p+1)− log p. This law applies to a
large of naturally occurring data, and it has been suggested that large deviations from this distribution could
be used as evidence of poor quality data or fraud. We refer to Varian (1972) for a discussion of Benford’s
law.



62 3. SPATIAL ERROR MODEL

agencies comprise about 75% of all the European dyads (i.e., data with origin codes 0 or 2
in the Gleditsch 2002 data). For Africa, however, relying on officially reported figures would
leave us with trade flow data for only 15% of the dyads. In our examples, we will use only
the officially reported data for Europe, but employ all estimates from all sources, including
the potentially more contentious estimates, for the analysis of trade flows in Africa.

The standard gravity model variables include the size of the economies and the
population of the two member states (data from Gleditsch 2002b) and the distance between
their capital cities. In addition, our model draws upon the existing literature on the
political determinants of trade and include the similarity of political orientation by the the
S similarity score of two countries UN voting records (see Signorino &
Ritter 1999, Gartzke 1998). Our measure of democracy is taken from the Polity 4 data. We
use a modified version, including estimates for countries not included in the original Polity
data based on the Freedom House data.5 We use the lower of the two values on the 21
point institutionalized democracy scale suggested by Jaggers & Gurr (1995), rescaled so
that all the values are positive. Finally, we consider whether the two states in a dyad are
involved in a militarized interstate dispute (see Jones, Bremer & Singer 1996).

R code
tab3.sem <- errorsarlm(logtrade ~ logdem + logapop + logbpop +

logargdppc + logbrgdppc + logs + logdist + logmid,
data=logdat98,na.action=na.omit,
nb2listw(dlist,style="W"), method="eigen")

summary(tab3.sem)
logLik(tab3.sem)

Tables 3.2 and 3.3 display OLS and spatially correlated error model estimates for
trade flows among European and African dyads respectively. As suggested by λ̂, there is
strong evidence of positive spatial correlation among dyads in both the African and the
European sample. Moreover, by comparing the OLS and the spatial error model (SEM)
estimates we can see that the point estimates for the magnitude of some effects highlighted
in the literature concerned with the political determinants of trade change notably when
we take into account spatial correlation among the residuals based on the common
membership structure of the dyads, rather than treating them as independent observation.
In particular, the coefficient estimate for the negative effect of an MID declines by almost
25% in the European sample and by over 40% in the Africa sample when we take into
account the spatial correlation among dyads. The coefficient estimate for democracy is
reduced to about a quarter of its original size in the African sample, while in the European
sample it increases by almost 15%. Moreover, the standard errors for the individual
coefficient estimates are generally larger for the spatial error model than for the OLS
model, indicating that a model that treats the individual dyadic observations as
independent of one another risks inducing overconfidence in the estimates through
incorrect standard errors. More generally, although we do not have any coefficients that
switch from being “significant” to “insignificant” based on conventional thresholds, it can
certainly be the case that many apparent findings from analyses treating individual dyads

5See http://privatewww.essex.ac.uk/∼ksg/Polity.html.
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as independent of one another may turn out to be less robust when we take into account
spatial dependence among the observations.

Table 3.2. Exports, Europe: Ti→j.

OLS SEM

Variable β̂ SE(β̂) t-value β̂ SE(β̂) z-value

Intercept -32.70 0.67 -48.82 -33.94 1.71 -19.90
log Democracy 0.38 0.06 5.93 0.43 0.10 4.38
log Population i 0.86 0.02 40.37 0.89 0.03 31.46
log Population j 0.75 0.02 34.93 0.77 0.03 27.33
log GDP per capita i 1.54 0.04 35.23 1.56 0.06 17.35
log GDP per capita j 1.01 0.04 23.07 1.03 0.06 7.66
log S 0.33 0.05 6.92 0.35 0.05 7.69
log Distance i ↔ j -0.34 0.01 -24.33 -0.34 0.01 -25.83

log Dispute i ↔ j -1.94 0.27 -7.14 -1.48 0.29 -5.01

λ 0.98 0.01 73.73

N 1500 1500
DF 8 9
Log likelihood -2324.8 -2239.668

Table 3.3. Exports, Africa: Ti→j.

OLS SEM

Variable β̂ SE(β̂) t-value β̂ SE(β̂) z-value

Intercept -7.41 0.33 -22.38 -7.47 1.45 -5.16
log Democracy -0.04 0.04 -1.08 -0.01 0.05 -0.15
log Population i 0.26 0.01 20.51 0.26 0.02 14.45
log Population j 0.23 0.01 17.81 0.23 0.02 12.55
log GDP per capita i 0.38 0.02 17.96 0.38 0.03 12.78
log GDP per capita j 0.31 0.02 14.82 0.31 0.03 10.55
log S 3.41 0.40 8.50 3.43 0.47 7.24
log Distance i ↔ j -0.17 0.01 -20.81 -0.17 0.01 -22.21

log Dispute i ↔ j -0.71 0.18 -3.85 -0.42 0.18 -2.37

λ 0.99 0.01 124.2

N 2550 2550
DF 8 9
Log likelihood -3096.2 -2945.9
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7. Conclusion

In this chapter we have introduced the spatially correlated error model of spatial
dependence. Since it will generally be difficult—if at all possible—to determine whether
the spatially correlated error or the spatially lagged y model will be appropriate based on
statistical criteria alone, researchers should think carefully about which of the two would
provide the most plausible way to incorporate spatial dependence. We have argued that
although the spatially lagged y model is appropriate when we expect nearby values of the
response to exert a direct effect of the value of the dependent variable for a unit, the
spatially correlated error model is appropriate when we believe that some unobserved
feature not included in the systematic part of regression model may lead to a spatially
correlated pattern in the errors of the model. Our example of dependence among dyads,
where a single state enters into a large number of different dyadic observations, also
illustrates how the concept of spatial dependence can be extended to distance concepts
based on metrics other than geographic distances.



CHAPTER 4

Extensions

1. Introduction

The previous chapters in this monograph suggested the necessity and benefits of
taking into account spatial patterns in the analysis of social science data. We illustrated
important ways in which this can be done within a familiar linear regression framework,
namely the spatially lagged dependent variable, where the value of yi in connected units
exerts an impact on yj, and the spatial error model, in which there is simply a spatial
correlation of the errors for connected observations. These two are widely used spatial
regression methods and are useful for many applications. However, there are many
additional varieties of spatial regression models and extensions to other settings that we
have not considered, and our attention has been limited to cross-sectional data for
continuous dependent variables. In this section, we outline some extensions of spatial
statistical models and some of the thorny issues that spatial analysts may face. Although
our overview must be brief and we do not cover actual examples of these alternative
extensions and alternative approaches, we provide suggestions for further readings. Bivand,
Pebesma & Gomez-Rubio (2007) provide additional pedagogical materials sculpted for the
R statistical package.

2. Specifying Connectivities

One key problem facing analysts is how to construct and treat connectivities among
observations. Most applications of spatial regression models presume pre-specified
delineations of connectivities between observations. They should be based on theory or
hunches about the likely ways in which observations are substantively dependent. In
practice, this is often based on convenience or common approaches thought to be
state-of-the-art. Researchers should be aware that the ways in which connectivities are
chosen and coded can give rise to different views of the world. It is trivial that different
results may create variation in the direct specification of connections between units.
However, more subtly, these choices also affect the spatial structure implied by the spatial
multiplier as well as the modeled covariance structure (Wall 2004). Even in the case of
connectivities said to be based on geographical distance, the same spatial topology can
generate different connectivity structures depending on the researchers’ decisions. To see
this, consider the differences between three common spatial encodings: rook (common
boundaries), bishop (common vertices), or queen (both boundaries and vertices) in a
partial map of the United States shown in Figure 4.1. Colorado and Utah are neighbors by
sharing a common border, by sharing vertices, and by sharing both a border and vertices.
Colorado and Arizona, on the other hand, do not share borders, but do share a “vertex.”
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There is only one example of which we are aware of a similar situation in the political map
of country boundaries in the contemporary world: the Caprivi Strip in South West Africa.

ColoradoUtah

Arizona New Mexico

Figure 4.1. The Four Corners Area of the United States.

More typically, scholars identify units as close if they are within some distance
threshold, based on minimum distances among administrative centers or geographical
centroid or midpoints. Gleditsch & Ward (2001) discuss some of the problems of common
midpoint measures, which may be far from the boundaries of large units in the case of
administrative centers and outside the boundaries of a unit for strangely shaped units. An
overly narrow threshold may create a large number of islands, an issue we raised in
Chapter 1 in the context of New Zealand. It is about 4100 km from Alice Springs,
Australia to Christchurch, New Zealand, approximately the same as the distance from
Paris to Dar es Salaam. This implies that choosing a general distance band to link the
centroids of Australia and New Zealand and then apply the same criterion to other pairs of
countries would make most African countries and many countries in the Middle East and
Asia direct neighbors of France. Overly broad demarcations result in connecting almost
everything to everything else. Figure 4.2 illustrates the dramatic increase in density in a
graph linking states if their centroids are within 4000 kilometers (right panel), compared to
the graph linking centroids only if they are located within 400 kilometers of one another.
Ad hoc decisions to add specific connectivities or to use algorithms that choose the
k−nearest neighbors of each observation raise questions of why the same criteria are not
applied to other cases. However, such ad hoc decisions may be useful, even necessary, in
applied research. In summary, the choice of connectivity encoding always has substantive
implications for empirical results, because diffusion through differing networks leads to
different conclusions.

Connectivities based on non-geographical measures, such as trade flows, may create
additional problems. More specifically, if the non-geographic distance measures are based
on variables that are also included in the actual spatial model, then the connectivities may
not be exogenous, resulting in identification, as well as estimation, challenges. Researchers
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(a) 400km

(b) 4000km

Figure 4.2. Linkages among countries, at 4000 km and 400 km, using cen-
troid distances.

should devise connectivity matrices that plausibly match the spatial interaction process
being studied. Although goodness of fit and cross-validation can be helpful in eliminating
poor choices, devising connectivities is a theoretical issue, and there are no simple
diagnostics or heuristics that uniquely divine the “right” approach. We also stress that the
problems in identifying connectivities creates hurdles for testing a null hypothesis of the
absence of spatial dependence, since the null can only be rejected relative to a specific set
of connectivities.

2.1. Handling Connectivities. Another issue pertains to how, once specified, the
connectivities should be handled in the analysis itself. Should all connectivities be given
equal weight, or should we weigh some observations differently, for example by some
measure of size or importance? In the examples we have examined in this monograph, we
have assumed that Russia and Estonia carry equal weight for countries connected to both.
However, there is nothing that requires equal weighting of all connectivities. Researchers
may wish to experiment with alternative weighting scheme if this makes sense in the
context of their specific research questions.

We have only considered regression models with a row-normalized matrix, W,
specifically where the sum of all connectivity weights add to 1. This specific normalization
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has the advantage that the spatial lag ys will have the same potential metric or units as y
itself. However, whether normalization makes sense in specific applications depends on the
problem at hand. Murdoch, Sandler & Sargent (1997), for example, are interested in how a
country’s emissions of pollutants are influenced by depositions from other countries. The
relevant issue concerns the total amount of emitted pollutants; normalizing the
connectivity matrix by the number of connected countries is probably not appropriate.

Analysts should treat conventions in the spatial statistical literature as suggestions
and carefully consider whether they are sensible in their specific research setting. It is
generally useful to explore several plausible alternatives.

2.2. One vs. Many Connectivities. So far, we have explored cases with a single
spatial dependence term, represented in a single connectivity matrix. In many cases there
may be several possible networks or forms of dependence. Often, it makes sense to include
alternative delineations of connectivity based on geographical distance or other political
networks, such as trade interaction, cultural similarity, or the ethnicity or profession of
individuals (see, e.g., Beck, Gleditsch & Beardsley 2006, Lin, Wu &
Lee 2006, Lacombe 2004). Direct impacts may arise not only from first-order
connectivities, but from higher-order connectivities. Figure 4.3 illustrates the first- and
second-order spatial lags from the 158 country example used in the previous chapters.

It is possible to generalize the spatially lagged y model to include two (or more)
distinct connectivity matrices, WA and WB, and estimate separate parameters ρ1 and ρ2

for the relative impact of each by

yi = xiβ + ρ1w
A
i y + ρ2w

B
i y + ε.

The expanded spatially lagged y model is more complicated to estimate than the standard
spatial autoregressive model. Provided the two matrices are sufficiently different, and do
not contain entirely overlapping information, this model can be estimated. If the matrices
are too similar, problems arise that resemble those caused by collinearity in the classical
regression model. The MLE estimator discussed previously can be generalized to this case
(although this is not yet implemented in R). This model can also be estimated by
instrumental variables.

3. Inference and Model Evaluation

As is commonly the case with much data in the social sciences, spatial data do not
come from a random sample. Spatial analysis requires a relatively complete spatial
coverage because analysis of data with many missing units can lead to nonsensical
inferences about spatial clustering or the impact of nearby units. Classical inference is
based in large part on asymptotic assumptions that may be difficult to justify in most
spatial contexts. These require, in essence, that the number of neighbors does not cascade
upward as a function of the size of the area that is examined. Even so, the data typically
involved do not resemble a sample, but tend to be cross-section of some area or universe of
interest. This results in an empirical search for models that seem plausible for the process
under investigation and which, in principle, could have generated the observed data.
Classical approaches may be based on the notion of a generalizing to so-called
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(a) 1st Order

(b) 1st and 2nd Order

Figure 4.3. First and Second-order Spatial Lags for 158 Countries, based on
nearest neighbor distances of 200 km.

“super-population,” of which the observed spatial pattern is realization, but this concept
does not sit so well with spatial analysis where one typically studies what Berk, Western &
Weiss (1995) call “apparent populations” (see also Leamer 1978).

One possible solution to this conundrum is to treat estimation more heuristically,
and use cross-validation of the results to examine the performance of the estimated model
on data that has not been used in the spatial regression estimation following the tradition
of Geisser (1974, 1975). In the spatial context, this could be accomplished by using
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observed data from a subsequent time period or a different spatial domain. Bivand (2002),
for example, splits data into two geographical areas to evaluate the performance of different
modeling approaches in terms of their ability to predict observations in the other half of
the data.

3.1. Discrete and Latent Variables. We have assumed that y can be treated as a
continuous variable. Yet, many phenomena of interest to social scientists are discrete
events, which are either observed in binary form or as counts. Alternatively, these might be
outcomes of partially observed latent processes. Just as linear regression is sub-optimal for
these data, the models examined here are not generally appropriate for such data.
However, it is possible to generalize the idea of a lagged dependent variable or
autoregressive process to binary event or count data, including, for example, the
autologistic model in which values of y for nearby units influence P (yi = 1) (Christensen &
Waagepetersen 2002, Besag 1972, Besag 1974, Huffer & Wu 1998, Ward & Gleditsch 2002).
Estimating these models is more difficult than the continuous case due to an intractable
likelihood resulting from the fact that y appears on both sides of the equation. Traditional
approaches have treated the y in connected observations as fixed for estimation purposes,
but modern computing power allows approximating the full likelihood through simulation
(Geyer & Thompson 1992).

3.2. Spatial Heterogeneity. Normally, the major effects investigated with regression
are fixed effects and pertain to the relationships between the independent and dependent
variables everywhere. However, if this relationship is different in one part of the world than
it is in another, we have a form of spatial heterogeneity where the effects are geographically
conditional. Spatial heterogeneity is an opportunity to learn something about the
phenomenon of interest as well as a curse. On the one hand, it offers another way to
disaggregate regression results so that they are sculpted to be more revealing in differing
regions. On the other, it causes havoc with standard regression assumptions of constant
variance across the domain of analysis. Geographically weighted regression, known as
GWR, is a windowing technique for exploratory data analysis that provides estimates of
regression coefficients for each geographical location, based on a weighting of other
observations near that location. This approach to spatial analysis is developed in
Brundson, Fotheringham & Charlton (1996) and more fully detailed in Fotheringham,
Charlton & Brundson (2002). A recent example in political science is Calvo & Escolar
(2003); an interesting application in demography is found in Işik & Pinarcioğlu (2007).

3.3. Point and Geostatistical Data. The approaches explored so far treat
geography as being compartmentalized. Countries, for example, are taken as a lattice,
implying that each country has a location somewhere on a grid, but that no country takes
up more than one grid location. This approach is useful for many kinds of data, but not all
phenomena are reasonable to observe for area or latices and data are often not organized
this fashion. Indeed, many types of data are organized as point data in a geo-referenced
manner, so that the exact or approximate location of each observation is observed in a
continuous topology, not an imaginary grid. Geostatistical methods attempt to model the
spatial covariation to construct a geostatistical surface for the continuous geography based
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on the information that exists at specific locations within that geography. One approach to
doing this is known as Kriging, formally developed by Matheron (1963) but named after
the South African mine engineer Danie G. Krige, who pioneered plotting distance-weighted
average gold grades.1 This approach is widely employed in the geophysical sciences, and
has recent applications in the social sciences as well (Cho & Gimpel 2007). Although data
traditionally only have been available for large aggregate units or without spatial
identifiers, there is an increasing availability of geographically disaggregated data or
explicitly geo-referenced data.

3.4. Hierarchical Models. Following the early contribution of Besag (1974) there has
also been considerable work on models that are conditionally autoregressive, often called
CAR models. In a conditional model, the random variable observed at a certain location is
conditioned on observations at neighboring observations, which are treated as exogenous.
In multivariate and hierarchical models, not only are spatial lags taken as exogenous, but
so are other explanatory variables. There is considerable work underway to exploit this
approach, sometimes focusing on several response, or dependent variables. Recent work on
these topics can be found in Jin, Banerjee & Carlin (2007) and Rue & Held (2005).

A related approach to modeling spatial variation is to examine the sources of local
variation in a hierarchical fashion. Hierarchical spatial models are based on incorporating
different sources of uncertainty from different levels of analysis. These models result in
linking together several levels of analysis through the use of probability distributions. In
our example of development and democracy, these levels might include (1) local
within-country variation in the characteristics of factions and institutions that help to
determine the daily ebb and flow of politics and economics, (2) neighborhood effects from
very nearby countries that have strong connections to and impacts upon particular
countries, (3) regional source of variation that operate on a broad set of countries,
including organizations organized along regional lines, and (4) global forces that affect
every country to some extent, as seen in global markets for certain commodities. Models
that explicitly explicate each of these sources of variation will be hierarchical models.

Recent work to develop this perspective is based on a Bayesian approach that is
itself dependent on the use of iterated approaches (Markov Chain Monte Carlo, Gibbs
sampling, Metropolis-Hastings, et cetera) to implement a strategy of obtaining
distributions of parameters at all of the levels of the spatial process. Such models require
intense computation, but are very promising. The recent R package spBayes can also help
facilitates MCMC computations for univariate and multivariate spatial models (Finley,
Banerjee & Carlin 2007). Waller, Carlin, Xia, and Gelfand (1997) is an influential
application, and Banerjee, Carlin & Gelfand (2004) provide a good overview of the
hierarchical approach.

3.5. Time-Series Data. We have discussed estimation of models for a cross-section
of observations at the same time period. Much of social science analysis based on
time-series—cross-section data structures, where the same unit is observed at several

1Following the name of its originator, kriging should be prounced as “kricking”.
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different time periods. The spatially lagged y model can be generalized for
time-series–cross–section (TSCS) data as

yi,t = xi,tβ + ρwiyi,t + εi,t.

This model is likely to suffer from problems of serial correlation over time, since yi,t is likely
to be very similar to yi,t−1, which in turn creates problem with assumption of independent
errors. One way to address this is by adding a temporal lag of y to the model, yielding

yi,t = φyi,t−1 + xi,tβ + ρwiyi,t + εi,t.

It is difficult to estimate TSCS models with simultaneous spatial dependence if we need to
simultaneously account for both temporal and spatial dependence. If we add the lagged
dependent variable to the right hand side, the Jacobian of the transformation of the error ε
to y becomes considerably more complicated, and as far as we know, no one has come up
with a satisfactory estimator for this model. However, if one is willing to assume that the
influence of yi,t on the neighboring y’s occurs with a one time period lag (i.e., yi,t−1), it is
possible to use ordinary least squares because the relevant neighboring values of y can be
treated as pre-determined at time t. This is simply:

yi,t = φyi,t−1 + xi,tβ + ρwiyi,t−1 + εi,t.

Assuming that the spatial effects enter with a time lag will often be as plausible as
assuming an instantaneous effect. Moreover, it is possible to test to what extent a model
succeeds in accounting for both spatial and temporal dependence by conducting the
appropriate tests with the estimated residuals from the model, and especially by employing
cross-validation and out-of-sample heuristics (for further discussion, see Beck, Gleditsch &
Beardsley 2006).

4. Summary

Spatial dependence plays a big role in many social phenomena. Taking spatial
aspects into account in our analyses is entirely feasible, but does require some additional
assumptions and information. Because statistical and computational developments have
reduced the barriers to undertaking spatial analysis of social data, we should expect new
insights about the social and spatial processes that interest social scientists. Our own
experience has convinced us that social science data are characterized by many unexplored
dependencies. Taking even some of these into account generally yields important, new
insights.



APPENDIX A

Software Options

For a long time, spatial estimators were not available in any standard statistical
packages, forcing interested researchers to either write their own program or purchase
Anselin’s SpaceStat software. This situation has changed markedly over the last couple of
years. In this section we review the available options.

Many of the software options still rely on the Ord approach and evaluate the
eigenvalues of W prior to optimization, although some alternatives now use the faster Pace
and Barry approach. Many software packages require a full n× n matrix as input. This
tends not to work well for large data sets. Since there usually tends to be many 0 entries in
connectivity matrices, software options that can use sparse matrix representations allows
for work on much larger data sets.

We list here some software options for spatial analysis.

(1) Anselin’s SpaceStat software is no longer maintained as a separate package under
the control of Anselin, but has been purchased by a commercial company and is
available as a part of a geographic visualization program TerraSeer (see
http://www.terraseer.com/products/spacestat.html). The costs of the
software is substantial, even for an Academic license. The old version of Spacestat
runs in MS-dos, has what might be described as an old-school, menu-driven
interface. It also relies on the Ord approach to determinants of the weights matrix
and requires a full matrix representation in estimation. We are not familiar with
the current product distributed as part of TerraSeer and thus cannot comment on
how this may differ from previous versions.

(2) Anselin and colleagues have developed a new package called GeoDa, available at
http://sal.agecon.uiuc.edu/geoda main.php. GeoDa does both exploratory
spatial data analysis as well as simple spatial regression analysis. GeoDa is
completely driven by a point and click interface and does not require any
programming, however, it does not allow users to customize or modify any of the
features as would be possible in a general statistical package. Anselin, Syabri &
Kho (2004)[3] suggest it is primarily appropriate as a learning package, “with more
sophisticated users ‘graduating’ to R after being introduced to the techniques in
GeoDa.”

(3) Pisati’s spatreg macro for Stata allows estimating the spatial autogregressive and
error models. This is available free of charge. The downside of this program or
macro is that it relies on the Ord approach, and requires a full matrix
specification. The standard Intercooled version of Stata also has a restrictive
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maximum size for matrices. This is available in Stata technical Bulletin sg162.
See help stb within Stata for help on estimation.

(4) Roger Bivand has developed an R-package (spdep) that implements the models
discussed in this monograph. This package also allows for a sparse list
representation of connectivity matrices. Bivand has also developed various
material for integration R and GRASS, an open source GIS program. Moreover,
many utilities have been made available for creating maps and extracting
information from Arcview’s shapefiles format in R. See
http://cran.r-project.org/src/contrib/Descriptions/spdep.html for
further details on the package. These, as well as the underlying software platform
are open source, and available free of charge.

(5) Several MATLAB toolboxes for spatial analysis are available. Pace and Barry’s
Spatial Statistics is available free of charge at
http://www.spatial-statistics.com/. MATLAB itself is not free of charge.
LeSage’s Spatial

Econometrics toolbox, available at
http://www.spatial-econometrics.com/, is particularly helpful in estimating
models on very large data set, and also allows estimating a spatial autoregressive
model with two connectivity matrices through the saw() command.

(6) The latest version of the commercial package ARCINFO from ESRI, Incorporated
includes many facilities for undertaking statistical analysis of spatially organized
databases, especially those in its Statistical Analyst toolkit. It is especially
adept at calculating neighborhood statistics and classification analysis.

(7) Splus is available from the Insightful corporation. Like R, it is also based on the S
statistical language. It includes a module (SpatialStats) that features many
analysis tools for spatially correlated data. It has tools for geostatistical, point,
and lattice spatial data.

(8) WINBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/) and GeoBUGS are two
programs oriented to Bayesian analysis. GeoBUGS was developed by
epidemiologist in London as an add-on to WinBUGS. It supports the Bayesian
analysis of (relatively small) spatial models.

(9) Schabenberger and Gotway (2005) provide an extensive set of macros and
programs to undertake spatial data analysis in SAS, available through the web site
of the publisher’s Web site: www.crcpress.com

(10) Spatial hierarchical methods are readily available through the R package spBayes,
facilitating the MCMC computations often required in such models (Finley,
Banerjee & Carlin 2007).

http://www.mrc-bsu.cam.ac.uk/bugs/
www.crcpress.com
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