
Abstract We apply methods of exploratory spatial data analysis (ESDA) and
spatial regression analysis to examine intercounty variation in child poverty rates in
the US. Such spatial analyses are important because regression models that exclude
explicit specification of spatial effects, when they exist, can lead to inaccurate
inferences about predictor variables. Using county-level data for 1990, we re-
examine earlier published results [Friedman and Lichter (Popul Res Policy Rev
17:91–109, 1998)]. We find that formal tests for spatial autocorrelation among county
child poverty rates confirm and quantify what is obvious from simple maps of such
rates: the risk of a child living in poverty is not (spatially) a randomly distributed risk
at the county level. Explicit acknowledgment of spatial effects in an explanatory
regression model improves considerably the earlier published regression results,
which did not take account of spatial autocorrelation. These improvements include:
(1) the shifting of ‘‘wrong sign’’ parameters in the direction originally hypothesized
by the authors, (2) a reduction of residual squared error, and (3) the elimination of
any substantive residual spatial autocorrelation. While not without its own problems
and some remaining ambiguities, this reanalysis is a convincing demonstration of the
need for demographers and other social scientists to examine spatial autocorrelation
in their data and to explicitly correct for spatial externalities, if indicated, when
performing multiple regression analyses on variables that are spatially referenced.
Substantively, the analysis improves the estimates of the joint effects of place-
influences and family-influences on child poverty.
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Introduction

In the past two decades, developments in the field of spatial econometrics (Anselin
1988, 2001a) have resulted in two important outcomes. First, studies in a variety of
social science disciplines have demonstrated the value gained by explicitly
acknowledging spatial effects in explanatory statistical models. Such studies can be
found in criminology (Baller, Anselin, Messner, Deane, & Hawkins, 2001), eco-
nomics (Case, Rosen, & Hines, 1993; Holtz-Eakin, 1994), agricultural economics
(Nelson, 2002), land use and land cover change (Bell & Irwin, 2002; Mertens, Poc-
card-Chapuis, Piketty, Lacques, & Venturieri, 2002; Müller & Zeller, 2002; Munroe,
Southworth, & Tucker, 2002; Nelson & Geoghegan, 2002; Vance & Geoghegan,
2002), environmental and resource economics (Anselin, 2001b; Bockstael, 1996;
Walker, Moran, & Anselin, 2000), adoption/diffusion studies (Case, 1992), geo-
graphic patterns of suicide (Baller & Richardson, 2002), and real estate analysis
(Can & Megbolugbe, 1997; Pace, Barry, & Sirmans, 1998). A second outcome is the
theoretical refinements and software developments that have grounded new ana-
lytical tools in theory and made them reasonably accessible to data analysts not
specifically trained in the geosciences (Anselin, 1999; Goodchild, Anselin, Appel-
baum, & Harthorn, 2000).

However, while the studies cited above demonstrate that these approaches have
been adopted by a variety of researchers working in different substantive areas across
the social sciences, outside of human geography and regional science, adoption has
not been widespread. The explicit consideration of spatial externalities in much of
the sociological literature is a very recent phenomenon (Anselin, 2000, p. 11). Some
disciplines in the social sciences (e.g., demography) have largely ignored these
developments (Tiefelsdorf, 2000, p. 151; Voss, White, & Hammer, 2004). This is
ironic, since maps of various social and economic attributes from the census at
differing levels of census geography immediately and clearly demonstrate that low
attribute values tend to cluster together in space, as do high values—patterns sug-
gesting the presence of positive spatial autocorrelation (Brewer & Suchan, 2001).

The irony is further heightened because it has long been understood that
regression analysis of spatially distributed variables can lead to incorrect statistical
inference (a result of inefficient or biased parameter estimates) when spatial auto-
correlation exists and when model specifications fail to incorporate proper correc-
tions for such spatial effects (Cliff & Ord, 1973). To our knowledge, however, no
existing statistical investigation into the spatial distribution of poverty has adopted
spatial econometric methods.

This paper uses spatial econometric methods to re-examine place and family
effects on child poverty. Specifically, we demonstrate how regression models can be
tested for spatial effects, evaluate the results of failing to account for these effects in
models of child poverty in the US, and correct for such effects in more properly
specified models. We accomplish this by revisiting an article, published in this
journal, that explores the determinants of geographic variability in county-level child
poverty rates (Friedman & Lichter, 1998).
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In the following section we briefly review the theoretical and empirical research
addressing the causes of poverty. Since our goal is to use this substantive issue to
demonstrate the appropriate integration of spatial effects in regression models, this
overview of spatial inequality in child poverty is deliberately brief and is included
primarily to contextualize our analysis. Next we review the findings from the
Friedman and Lichter article and examine the important contributions their research
made to the poverty literature. Following this, we reanalyze their data, demon-
strating how and why their model can benefit from modifications that incorporate
spatial process effects. This section addresses an important emergent issue and
therefore assumes a somewhat (hopefully useful) didactic structure. In the fifth
section, we describe our research strategy, and, in a sixth section, we comment
briefly on our results and compare these to the original findings. Finally, in a con-
cluding section, we discuss the importance of this research as an example for
demographers and others concerned with poverty who are undertaking analyses of
geo-referenced data.

Background

Over the past 40 years, the causes and consequences of poverty, and changes in
poverty over time, have been the subjects of much academic research and social
policy debate. In large measure, two schools of thought have dominated this research
and debate. One attributes the causes of poverty primarily to individualistic or
family compositional forces. Sometimes referred to as ‘‘people poverty,’’ this line of
reasoning points to such underlying causes as a ‘‘breakdown’’ of traditional Amer-
ican family norms, high levels of teenage and non-marital childbearing, and the rise
of a permanent urban underclass caught up in a culture of poverty from which
escape is difficult (for a review, see Wilson, 1987). Extensions of this general view
see child poverty in the US as a by product of predisposing family structures: chil-
dren born to single mothers and children of divorced parents (Rainwater & Smee-
ding, 1995; Smeeding & Torrey, 1988; Espenshade, 1985). The argument often is
grounded in the empirical observation that families headed by a single parent are
several times more likely to be poor than are married-couple families with children
(National Commission on Children, 1991).

Another school of thought focuses on contextual or structural forces, sometimes
referred to as ‘‘place poverty.’’ These include issues such as urban economic dislo-
cations, faltering regional economies, high unemployment, poor and often disorga-
nized local employment opportunity structures—all forces over which the individual
has little or no control (Massey & Denton, 1993; Pebley & Sastry, 2003; Rexroat,
1989; Tickamyer & Duncan, 1990; Tigges, 1987; Tomaskovic-Devey, 1987; Wein-
berg, 1987; Wilson, 1996).

That said, there are examples of poverty research that have sought to transcend
the debate between people-poverty and place-poverty and to view both of these
underlying causes as contributory factors in explaining poverty—and, in particular,
child poverty—where the influences of industrial and local opportunity structures
are mediated through family structures (Conger et al., 1990; Easterlin, 1987). More
recently, Cotter (2002) has argued that the industrial and family structural
approaches to understanding poverty need not be viewed as competing explanations.
Building on the work of Schiller (1980), Cotter argues for a complementary
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approach that views ‘‘structural factors determining the level of poverty in a social
aggregate (establishing the number of poverty positions), and individual factors
determining the distribution (providing the criteria for the sorting)...’’ (2002, p. 537).
Cotter blends place and person influences by taking a multilevel modeling approach.
Our analysis takes a different approach by examining the spatial variation in child
poverty using spatial econometrics.

Findings of Friedman and Lichter

It is into this debate about the causes of poverty—specifically child poverty—that
Friedman and Lichter (1998) (henceforth FL) make their contribution. Using
county-level data from the 1990 decennial census, they review the familiar and
persistent geographic concentrations of child poverty in the US. We replicate their
map revealing concentrations of higher child poverty in Appalachia, the Mississippi
Delta, the lower Rio Grande Valley, and the historical ‘‘black belt’’ that sweeps
across southern states in an arc from east Texas to North Carolina (Fig. 1). Other
concentrations are apparent in central city counties of major metropolitan areas and
in rural counties with Indian reservations. Large expanses of relatively low child
poverty also are evident, especially (1) in a near-contiguous band of counties
sweeping south from New England through the southern Piedmont region of central
Virginia and North Carolina and (2) in large portions of the central Midwest. The
principal research issue for FL was ‘‘how industrial structure affects spatial variation
in county-level poverty rates for children... and how these effects are mediated by
employment opportunities and family structure’’ (1998, p. 93). This statement
acknowledges the validity of both schools of poverty study and subscribes to a
mediation process. With that framework, FL set out to ‘‘estimate multivariate
models that assess the direct and indirect effects (through family structure) of local
labor market conditions and employment opportunities on county child poverty
rates’’ (1998, p. 94).

Fig. 1 Percentage of children in poverty: 1990
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Data and variables

Data for the FL analysis came from the 1990 US decennial census, Summary Tape
File 3C (US Bureau of the Census, 1992). Variables selected for their models are
shown in Table 1. For details regarding their choice and operationalization of
variables and their model specification, the reader is referred to the original article
(Friedman & Lichter, 1998).

Findings

Using a sequence of weighted logistic regression models (Table 2), FL concluded
that:

1. Most of the effect of industrial structure on child poverty in the US is mediated
through local employment opportunity structures (1998, p. 97).

2. The effects of industrial structure and employment opportunity structure are
mediated through family structures—but only partly. ‘‘[E]mployment disloca-
tions contribute to the child poverty problem by undermining the formation and
stability of ‘low risk’ two-parent families’’ (1998, p. 99).

3. The effect of family structure on child poverty is important but is smaller than
the effect of the county unemployment rate (1998, p. 100).

4. ‘‘[T]he current industrial mix and the lack of employment opportunities place
non-metro children at a comparative economic disadvantage and exacerbate the
child poverty problem’’ (1998, p. 104).

Table 1 Variables used in the Friedman and Lichter models

Dependent variable: log( p/1 – p) where p = proportion of children <18 considered poor in 1989

Hypothesized association Independent variables
Industrial structure variables

+ Proportion of employed persons in extractive industries
+ Proportion of employed persons in non-durable manufacturing
+ Proportion of employed persons in miscellaneous services
+ Proportion of employed persons in professional services

Employment opportunity structure variable
+ Unemployment rate (in 1989; all workers aged

16+ in civilian labor force)
+ Underemployment rate (male workers aged 16+ who worked

<35 h/week and/or <27 weeks during 1989)

Family structure variable
+ Proportion of families with children headed by

females (no husband present)

Control variables
+ Proportion non-Hispanic black in population
+ Proportion Hispanic in population
+ Proportion of adults (18+) with completed education H.S. or less
+ Live in south dummy variable (South = 1)
– Live in metro area dummy variable (Metro = 1)
– Proportion of workers (16+) employed in county of residence

Source: All variables from the 1990 US Census of Population, STF3C. See Friedman and Lichter
(1998, p. 98).
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5. ‘‘Local industrial structure has direct effects on child poverty (presumably
through parental wages), as well as indirect effects through parents’ ability to
find work and to maintain a stable family life for their children. Children’s
lives—and their economic circumstances—are tied to the fortunes of the
communities in which they reside’’ (1998, p. 105).

Spatial data analysis

Since the visual message in Fig. 1 points so unambiguously to an uneven spatial
distribution of child poverty in America, we anticipated that the residuals from the
FL analysis would not be independent as required by the assumptions underlying
classical regression. With the authors’ cooperation, we replicated the FL findings,
focusing our initial attention on spatial autocorrelation in the residuals of their
regression models. The comments that follow specifically address their final model
(Table 2).

FL express their main variable of interest (proportion of children in poverty) in
logit form to make the variable more closely conform to the assumption of normality
and to improve linearity between the dependent variable and the independent
variables (Aldrich & Nelson, 1984). They reduce their variable set to control the
extent of multicollinearity, and they weight their model to accommodate heter-
oskedasticity. When conducting regression analyses with data aggregated to geo-
graphic areas such as counties (referred to in the spatial analysis literature as an
irregular lattice), it is common to find spatially autocorrelated (i.e., correlated with
themselves) residuals. More precisely, the residuals usually are spatially positively
autocorrelated such that high residuals tend to cluster in space and low-valued
residuals similarly tend to show geographic clustering. Although FL take pains to
ensure the proper specification of their model, they do not address the issue of
autocorrelated regression residuals.

Why do autocorrelated residuals occur?

Autocorrelated residuals are common, although not universal, in standard
regression analyses of dependent variables that are themselves autocorrelated.
Figure 1 strongly suggests that county-level child poverty is one such variable.
Broad regions exhibit high child poverty, where any selected county and its
neighbors likely share high levels of poverty. Similarly, other regions exhibit al-
most uniformly low levels of child poverty, where a selected county is likely to
have a low rate of child poverty similar to that of its neighbors. (For the moment,
we set aside the matter of how the term ‘‘neighbor’’ is defined.) Consider some of
the mechanisms that can cause spatial autocorrelation (Wrigley, Holt, Steel, &
Tranmer, 1996):

1. Feedback. For most social processes, individuals and households interact with
each other and thereby influence each other. The influence of such interaction is
likely to be stronger for those who are in frequent contact. Residential proximity
generally increases the frequency of such interactions and the strength of the
feedback. This process is formally based on adoption/diffusion theory (Rogers,
1962) or agent interaction theory (Irwin & Bockstael, 2004) and suggests models
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commonly referred to as spatial lag models (explained below). Poverty is a
condition of economic deprivation, however, and one that carries with it a certain
amount of societal disapproval. Thus, we are disinclined to favor this hypothesis
when accounting for spatial autocorrelation of child poverty among counties.

2. Grouping forces. Individuals and households with common characteristics
sometimes are found clustered together either by choice or because they are
constrained to co-locate by the coercive operation of social, economic, or
political forces. Persons in poverty may well be subject to such forces, say,
through the operation of local housing or labor markets. When this type of
constraint is responsible for spatial autocorrelation in a dependent variable, it
may be possible to identify the variable or variables involved in the process and
operationalize them on the right-hand side of a regression specification. Some-
times the spatial autocorrelation in the dependent variable (and in the regression
residuals) can be explained by autocorrelated covariates (independent vari-
ables), and standard regression approaches will work just fine. If a causal vari-
able cannot be identified and operationalized, then the source of the
autocorrelation will remain in the error term, necessitating what is referred to as
a spatial error model and estimation procedures appropriate for such a model
(Anselin, 1988, 2001a; Anselin & Bera, 1998).

3. Grouping responses. Individuals or households that share a common attribute or
a set of common characteristics may respond similarly to external forces. Often
there exist contextual forces (e.g., local industrial structure and labor practices,
long-time cultural influences, or geophysical conditions affecting, say, soil fer-
tility and profitable agricultural pursuits) that affect all individuals and house-
holds in an area. Different groups of people will possess varying capacities (e.g.,
the necessary human or social capital) to overcome these external forces. It is
likely, we believe, that county-level child poverty is spatially autocorrelated
because of the combined disposition of such contextual influences. Often a data
analyst can deal with the spatial autocorrelation that emerges under the oper-
ation of such a process by identifying some of these contextual forces and
declaring different ‘‘spatial regimes’’—subregions revealing systematic differ-
ences in the relationships under investigation. Failing this, as with the grouping
models discussed in the previous paragraph, the source of the spatial autocor-
relation will remain in the regression error term, the result of an omitted vari-
able in the specification, and spatial econometric approaches must again be
considered.

4. Nuisance autocorrelation. Most commonly this occurs when the underlying
spatial process creates regions of attribute clustering that are much larger than
the units of observation chosen by (or available to) the analyst. Figure 1 re-
veals that the areas of high and low poverty generally are considerably more
extensive than is the particular lens (counties) through which we are viewing
the process. When units of analysis are much smaller than the regions of high
or low attribute values, spatial autocorrelation in the observations is inevitable.
As with substantive autocorrelation, nuisance autocorrelation must somehow
be recognized and eventually brought into the formal analysis. Anselin (1988,
p. 15) differentiates among these types of autocorrelation using the terms
‘‘apparent contagion’’ (spatial heterogeneity) and ‘‘real contagion’’ (spatial
dependence).

376 P. R. Voss et al.

123



Why do autocorrelated residuals cause problems?

Regression models with autocorrelated residuals violate the independence assumption
for errors in the classical multiple linear regression model , an assumption embodied in
the Gauss-Markov Theorem (see, for example, Fox, 1997; Greene, 2000). A more
helpful answer, however, addresses the potential dangers of violating the indepen-
dence assumption. Spatially autocorrelated residuals indicate that the errors are not
independent and that the regression parameter estimates therefore are no longer
‘‘BLUE’’—for Best Linear Unbiased Estimator. In particular, statistical inference is
unreliable because (1) the estimated regression parameters are biased and inconsis-
tent, or (2) standard errors of the parameter estimates are biased. For example, in the
case of positively autocorrelated residuals (the most common situation with census
data), if a spatial error model (defined below) is the ‘‘correct’’ specification, then
estimated standard errors in OLS are too small—possibly resulting in a claim of sta-
tistical significance for a parameter estimate when in fact such a claim is unwarranted.
Thus, even when the regression parameters are unbiased (not always the case), t-values
generally are wrong (too large), p-values are too small, and the R2 coefficient is
overstated. The stronger the autocorrelation in the residuals, the greater is the loss of
independent information in the process and the more likely are errors of inference.

How is autocorrelation measured?

Spatial autocorrelation has been recognized for many decades (Cliff & Ord, 1973,
1981), and various means of measuring it have been devised. The most common, a
statistic called Moran’s I (Cliff & Ord, 1981; Moran, 1950), is defined as follows:

I ¼ n
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where i and j index the areal units of which there are n, and wij is a spatial weight
(£1) defining the connection between areal unit i and areal unit j. wij is an element of
an n · n spatial weights matrix, W, defining the neighborhood structure within which
spatial dependence is believed to operate. W often is row-standardized (each row
summing to unity), in which case the denominator of the fraction in the first term
sums to n, simply making the value of the first term equal to unity.

Positive values of Moran’s I suggest spatial clustering of similar values. Negative
values (infrequent in the social sciences) suggest that high values are frequently
found in the vicinity of low values. The I statistic is similar to the familiar Pearsonian
product-moment correlation coefficient, however, the maximum and minimum
possible values of Moran’s I are not constrained to lie in the (–1,1) range (Bailey &
Gatrell, 1995, p. 270; Griffith, 2003, p. 5).

When significant spatial autocorrelation exists, what must be done to specify a
proper regression model?

This question forms the basis of an extensive literature. Recent treatments include
the work of Anselin (2000, 2001a, b, 2002), Anselin and Bera (1998), Getis and
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Griffith (2002), and Kelejian and Prucha (1997). Spatial effects must explicitly be
incorporated into the specification of the model and then the model must be esti-
mated using appropriate estimation techniques (maximum likelihood or instru-
mental variable general method of moments). While methods for proceeding are not
found in any sort of spatial analysis ‘‘cookbook,’’ one approach is reasonably well
established: (1) If indicated, consider methods for removing large-scale trend or drift
in the process (referred to as spatial heterogeneity) before advancing to spatial
regression models (designed to deal with spatial dependence). The reason for this
first step is that spatial regression and regression diagnostic statistics assume a sta-
tionary (homogeneous) spatial process. (2) Fit a standard OLS model to the data and
examine the regression diagnostics. Special tools for obtaining and interpreting such
diagnostics are found, for example, in Anselin’s SpaceStat software. The software
documentation can be found at http://www.terraseer.com/products/spacestat/docs/
spacestat_tutorial.pdf. (3) Relying on some defensible theory concerning the pres-
ence of autocorrelation in the data, and using the diagnostic guides from the OLS
regression, proceed to fit an appropriate spatial regression model. (4) If so indicated
by the diagnostics from the spatial regression, it may be necessary to cycle back to
step (1) to carry out further remediation with respect to large-scale spatial variation
in the process and then proceed iteratively through the steps again.

Reanalysis of Friedman and Lichter

Our reanalysis of the FL study focuses particular attention to matters of exploratory
spatial data analysis (ESDA) and spatial regression. The GIS software used in this
analysis are two products of ESRI (Environmental Systems Research Institute Inc.):
ArcView 3.2 and ArcGIS 8.1. The spatial regression software used is SpaceStat 1.91,
GeoDa 0.9i, S-Plus 6.1 (S + SpatialStats), and the open source programming lan-
guage R. The exploratory data analysis was carried out using SPSS for Windows
11.5.0 and GeoDa 0.9i.

Exploratory spatial data analysis

We began by testing the dependent variable for normality and the bivariate rela-
tionship of each independent variable with the dependent variable for linearity.
Although some of the independent variables (e.g., % Black and % Hispanic) were
not normally distributed, they were not transformed in order to replicate the original
FL model. Thus, only improvements to that model derived from the addition of a
spatial term to the original specification will arise. Figures 2 and 3 display, respec-
tively, the Moran scatterplot (Anselin, 1996) and a localized version of the Moran
statistic (Anselin, 1995), which are valuable for gaining a ‘‘local’’ understanding of
the extent and nature of spatial clustering in a data set.

In the Moran scatterplot of the dependent variable (the logit transformation of
the child poverty rate in 1990), the data are standardized so that units on the graph
are expressed in standard deviations from the mean (Fig. 2). The horizontal axis
shows the standardized value of the log odds for a county. The vertical axis shows the
standardized value of the average log odds for that county’s ‘‘neighbors’’ as defined
by the weights matrix, described above for the Moran statistic. Neighbors for this
illustration are defined under the ‘‘first-order queen’’ convention, meaning that the
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neighbors for any given county ‘‘A’’ are those other counties that share a common
boundary (or single point of contact) with ‘‘A’’ in any direction. The upper right
quadrant of the Moran scatterplot shows those counties with above average log odds
that also share boundaries with neighboring counties that have above average values
on the same variable (high-high). The lower left quadrant shows counties with below
average log odds values and neighbors also with below average values (low-low).
The lower right quadrant displays counties with above average log odds surrounded
by counties with below average values (high-low), and the upper right quadrant
contains the reverse (low-high). Anselin (1996) has demonstrated that the slope of
the regression line through these points expresses the global Moran’s I value which,
for the log odds of child poverty is 0.597. This statistic is strongly positive, indicating
powerful positive spatial autocorrelation (clustering of like values). It summarizes in
a single number what we have already observed in the map of county-level child
poverty (Fig. 1). Most counties are found in the high-high or low-low subregions of
the country.

While there are several techniques for identifying potential outliers, the Moran
scatterplot identifies observations that are very different from their neighbors. Based
on the Moran scatterplot, we examined two observations in which the dependent
variable is different (by several standard deviations) from neighboring values. In the
lower right quadrant we identified Roanoke City, VA (child poverty rate = 24.9%,
slightly above average). Due to the special nature of Virginia’s independent cities,
this observation has but one neighbor, Roanoke County (child poverty
rate = 3.76%, far below average). In the upper left quadrant we identified Los
Alamos County, NM, a low-poverty (2.8% child poverty) county surrounded by
three neighbors with an average rate of child poverty of 23.5%, slightly above the
national average. Other potential outliers were examined, but none were deemed
to have qualities necessitating their exclusion from the analysis. However, the

Moran’s I = 0.5969

Logodds

W
_L

o
g

o
d

d
s

Roanoke City

Los Alamos Co.

Fig. 2 Moran scatterplot of
log odds child poverty
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illustration is useful in showing how this type of exploratory neighbor analysis can
proceed. Such exploration is particularly aided by dynamic ‘‘linking and brushing’’
among windows—ESDA functionality that is accessible in the GeoDa software.

A map of the ‘‘local’’ Moran’s I statistic for our dependent variable, a LISA map
(for Local Indicators of Spatial Association), provides a corollary to the Moran
scatterplot by displaying the same data in a different way (Fig. 3a, b). The LISA
maps show the geographic distribution of the various value combinations (high-high
and low-low in Fig. 3a and low-high and high-low in Fig. 3b) for counties across the

Fig. 3 (a) Log odds child poverty: local Moran cluster map (neighbors similar) and (b) log odds
child poverty: local Moran cluster map (neighbors different)
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US. Counties where the local Moran statistic is not significant (at the 0.05 level,
based on a randomization procedure) are not shaded on the map.

Hotspot clusters of high rates of child poverty (surrounded by neighbors with high
poverty) are apparent in areas familiar from Fig. 1, including the Mississippi Delta
region, the Black Belt, Appalachia, southwest Texas and New Mexico, and several
counties with Indian reservations or proportionately large Indian populations in
southern South Dakota and northern Nebraska. Coldspots include the large
(low-low) cluster of non-central city counties in the Northeast and smaller clusters in
Wisconsin & Illinois and Minnesota & Iowa. A band of low-low counties stretches
westward from central Colorado to western Nevada.

Individual high-low counties (somewhat difficult to see at this scale) are mostly
metropolitan central city counties. A few statistically significant (at the 0.05 level)
low-high counties appear as islands here or there in Fig. 3b, but these defy easy
summarization. Many of these low-high counties contain small/medium cities or are
adjacent to such counties, perhaps suggesting the presence of suburban-type
neighborhoods.

While this exploratory view of the data may suggest hypotheses to test in further
analysis, the principal message is that, taken together, the maps in Figs. 1 and 3a, b
confirm that child poverty is a highly clustered regional phenomenon. A combina-
tion of socioeconomic processes operating in space over time has somehow con-
spired to partition the country into large regions of high and large regions of low
child poverty—with occasional ‘‘island’’ counties here and there that are very dif-
ferent from their neighbors.

Regression analysis

Using the variable specifications and transformations provided by FL we replicated,
exactly, their WLS regression results using S-Plus (S + SpatialStats) software and the
open source software, R. (The original FL analysis had been carried out using SAS.)
Focusing specifically on the final and most fully elaborated FL model, we examined
the regression residuals for spatial autocorrelation. A Moran’s I statistic of 0.326
( p < 0.001) strongly suggests that standard regression estimates cannot be trusted,
but, by itself, does not determine how we should proceed. We commenced the
reanalysis by specifying and estimating a simple regression model using SpaceStat in
order to obtain the useful diagnostic statistics that are part of the SpaceStat package.
The model is faithful to the FL model except that it is fit using OLS rather than
WLS—due to limitations of SpaceStat. The OLS diagnostics demonstrate the likely
presence of a spatial error process in the child poverty data, although we will present
the results of both a spatial error model and a spatial lag model.

A spatial error model commonly is specified (matrix notation) as follows:

y ¼ Xbþ u

u ¼ qWuþ e

where y is a (n · 1) vector representing the dependent variable, X is a (n · k) matrix
representing the k – 1 independent variables (and an initial column of 1s to
accommodate the regression constant term, b is a (k · 1) vector of regression
parameters to be estimated, u is a (n · 1) vector of error terms presumed to have a
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covariance structure as given in the second equation, q is a spatial lag parameter to
be estimated, W is a (n · n) ‘‘weights’’ matrix defining the ‘‘neighborhood’’ structure
in the spatial process such that Wu is a n · 1 vector of spatial lags of the model
disturbance term u; wij are elements of the W matrix and appear as terms in the
(non-matrix notation) equation for Moran’s I statistic, above, and, finally e is a
(n · 1) vector of independently (not necessarily identically) distributed errors.

Under this specification, spatial autocorrelation in the dependent variable results
from exogenous influences. Portions of the spatial autocorrelation may be
‘‘explained’’ by the included independent variables (themselves spatially autocor-
related) and the remainder is specified to derive from spatial autocorrelation among
the disturbance terms. The latter is assumed to occur because of one or more rel-
evant spatially autocorrelated variables omitted from the design matrix, X. Said
another way, it is, in part, the error structure that is the vehicle by which spatial
autocorrelation appears in the vector y. In this analysis using a first-order queen
convention, 10 counties have no neighbors (i.e., they are islands) and one county has
14 neighbors.1 The modal number of neighbors is six, representing the situation for
roughly one-third of counties in the US.

A spatial lag model commonly is given as follows:

y ¼ kWyþ Xbþ e

where terms are the same or similar to those presented for the spatial error model.
Wy is a n · 1 vector of spatial lags of the dependent variable y, and k is a spatial lag
parameter to be estimated.

Under this specification, the terms of vector Wy represent the weighted average
of the dependent variable for neighboring locations. The specification assumes the
existence of structured interaction among neighbors such that values of the depen-
dent variable in one county are directly dependent, through some function (defined
by kW), on the values of the dependent variable in neighboring counties. In both the
error and lag specifications, Xb (a n · 1 vector expressing the conditional means of
the random variable y) represents the direct effects on y of the attribute values, X, in
a county. That is, y and X are attribute values drawn from the same county.

1 One of the paper’s reviewers requested information relating to our selection of a first-order queen
specification for our weights matrix. Spatial weights matrices can specify a variety of configurations
by which to capture neighborhood influences. We chose the common convention (first-order queen)
for several reasons. First, after testing many alternatives, this specification was found to yield the
highest Moran statistic (0.597) with strong statistical significance (z-value = 55.6) on the dependent
variable. One weights matrix using a strong (order 6) inverse distance decay gave us a mildly higher
Moran statistic (0.609) but with much weaker statistical significance (z-value = 41.8). We also be-
lieve the simple first-order queen is easy to explain to the reader and easy for the uninitiated reader
to comprehend. Most important, however, we choose this convention because there is evidence when
using county economic data that neighborhood influences extend out approximately 40–50 miles and
then dampen appreciably (Wheeler, 2001)—quite unlike a smooth inverse distance decay. This
distance (40–50 miles) will certainly include immediate neighbors for most counties in the US. In
parts of the eastern US where counties are geographically small, this distance would occasionally
pick up second-order neighbors as well (i.e., neighbors of neighbors), but in much of the western US
a strict centroid selection rule of 50 miles would declare many counties to have no neighbors,
whatever. Thus the first-order queen selection is deemed a useful compromise. The literature on this
topic is growing. Two useful references include Griffith (1996) and Florax and Rey (1995).
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Results and discussion

We accept on theoretical grounds, as well as on the basis of diagnostic statistics (not
shown) from the OLS model run in SpaceStat, that a spatial error model is an
appropriate alternative to standard regression approaches of county-level child
poverty. Strong spatial autocorrelation (Moran’s I = 0.326) in the residuals from the
original FL model warrants this alternative. Our initial attempt to estimate a
weighted spatial error regression model in S-Plus (S + SpatialStats) seemed very
encouraging. In this run (column 2 of Table 3), three of the four ‘‘industrial struc-
ture’’ variables moved in a positive direction and for the Miscellaneous Services
variable actually corrected an earlier ‘‘wrong sign.’’ The residuals from the spatial
error model (bottom of column 2), when compared with the FL residuals, were much
reduced in size, and spatial autocorrelation among these residuals was essentially
eliminated (Moran’s I = 0.005). The apparent improvement in the model fit,
compared to the original FL model, raised suspicions, however, and these were
confirmed by a comparison of the log-likelihood figures. Despite the seeming
improvements just mentioned, the log-likelihood (–10,970) alone indicated other-
wise. This suggested the need for further exploration, and led to estimates of the
model shown in column 3 of Table 3. While we were unable to run the weighted
spatial error regression in any of the other software programs, the unweighted results
from GeoDa, R, and SpaceStat were identical (except for SpaceStat’s lower R2

statistic and modestly different AIC score). The parameters in column 3 are changed
in modest ways from those in column 2 (unweighted and weighted results, respec-
tively). In particular, the effects of local industrial structure on child poverty are
reduced. All four industrial structure parameters in column 3 shift in a positive
direction (becoming more positive or less negative) when compared to the original
FL non-spatial model shown in column 1. This is a welcome finding, as each of these
variables was hypothesized by FL to be positive. The lag parameter in column 3 is
much higher (when compared to model 2) suggesting stronger neighbor effects that
likely come from a set of one or more spatially autocorrelated omitted variables.
Recall that these results come from a spatial error specification where spatial
autocorrelation in the dependent variable, net of the included independent variables,
derives from spatial autocorrelation in the disturbance terms. The log-likelihood and
AIC scores imply that the model in column 3 is a considerable improvement over
both models shown in columns 1 and 2.

The results from the spatial lag model, shown in column 4, suggest that this
model does not perform as well as the spatial error model in column 3. Here we
get some help both from the error diagnostics produced by the software and from
a consideration of the theoretical underpinnings of differential risks of child
poverty. In column 4, the log-likelihood statistic is lower in value and the AIC
score is higher (compared to column 3)—both signals that the spatial error model
outperforms the spatial lag model. From a theoretical perspective, this is an
anticipated finding. It would be difficult to defend ‘‘neighborhood’’ similarities in
county-level poverty as arising from a spatial process akin to feedback or diffu-
sion—that is, a spatial lag process in the classical meaning of that term (Rogers,
1962). Poverty is not a social condition arising from imitation of one’s neighbors,
as discussed earlier in the paper as a ‘‘feedback’’ process yielding spatially auto-
correlated residuals. Rather, poverty seems to result from a complex mix of social,
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economic, and cultural factors, only a small number of which can be brought into
a statistical model of the process. Much of it remains unaccounted for and
summarized in the model’s error term—a spatial effect we attempt to capture in
column 3. Thus, a spatial lag specification (column 4) is deemed an unlikely data-
generating model for these particular data. It (and later, the model in column 6) is
included merely for didactic purposes.

Troubled by our inability to get properly weighted spatial process models to
compare against the original weighted least squares model of FL, we carried out
two more attempts to control heteroskedasticity by including the FL Weight var-
iable as an independent variable in a spatial error model (column 5) and spatial lag
model (column 6). While unorthodox, the models both seem to be very slight
improvements over their counterparts in columns 3 and 4. Parameter values are
not substantially altered in these final two runs, the residual sums of squares are
nominally smaller, the log-likelihood statistics is higher, and the AIC scores are
smaller.

When all the model diagnostics are considered, preference would be conferred
on the spatial error model shown in column 5—i.e., a regression model incorpo-
rating a lagged error term, a spatial parameter, q, and the weight variable (not to
be confused with the weight matrix) as an independent variable. We achieved
consistent results (save for the R2 statistic) from GeoDa, R, and SpaceStat. The
statistically significant parameters all have the hypothesized sign (as originally
posited by FL), the lag parameter, q, is registering the strong spatial autocorre-
lation among the disturbances, as anticipated, and the distribution of the model
residuals seems quite good—certainly when compared with FL’s original WLS
model (column 1). With the exception of model 2 (which we are inclined not to
trust for reasons stated above), the residual sum of squares for model 5 looks
favorable when compared to the original model, and the residual Moran’s I, while
significant at p = 0.01 (and, surprisingly, negative), vanishes to inconsequence as a
practical matter. Model 5 is preferred over model 6 for precisely the same reasons
given above for preferring model 3 over model 4. The only feature in model 6 that
merits special comment is that the parameter for the control variable, Proportion
Non-Hispanic Black, becomes negative and statistically significant. The same
unanticipated outcome is seen in model 4, but there the parameter fails to achieve
significance. This finding suggests an unlikely inverse marginal relationship
between proportion black and child poverty in the spatial lag model. We have
encountered this interesting result in one other context. While exploring these data
and model specifications using geographically weighted regression (Fotheringham,
Brunsdon, & Charlton, 2002), we discovered that the FL model specification
yielded large regions of the US where the marginal OLS parameter estimate for
the variable, Proportion Non-Hispanic Black, was negative. These regions—with
vast areas of rural populations—include (1) the states ranging from the Appala-
chian coal fields and westward across the lower Great Lakes industrial and corn
belts, down to and including portions of the southern Great Plains, and (2) most of
the lower 48 states in the Census Bureau’s Pacific Census Division (Washington,
Oregon, and California). Apparently in the spatial lag specification, the lagged
dependent variable picks up the strong spatial clustering of poor African Ameri-
cans in portions of the US (e.g., the Mississippi Delta region and the old coastal
plain Cotton Belt or Black Belt) and leaves behind those rural areas with high
rates of child poverty but low proportions of non-Hispanic Blacks.
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Concluding comments

Awareness of the problems caused by spatial autocorrelation when using aggregated
data in regression analysis is slowly spreading within the social sciences from the
disciplines of geography, spatial econometrics, and regional science. Within sociol-
ogy, for example, recent publications have emphasized the importance of space and
place (e.g., Gieryn, 2000; Lobao, 2004; Lobao & Saenz, 2002; Tickamyer, 2000). In
addition, a small number of sociologists have begun publishing research analyses
where spatial processes have been brought into model specifications to correct for
bias or inefficiency in parameter estimates that occur when spatial effects are ig-
nored (e.g., Baller & Richardson, 2002; Baller et al., 2001; Deane, Beck, & Tolnay,
1998; Messner & Anselin, 2004; Sampson & Morenoff, 2004; Sampson, Morenoff, &
Earls, 1999; Tolnay, 1995; Tolnay, Deane, & Beck, 1996). Unfortunately, however,
this is still an emerging area where software developments have not kept pace with
conceptual and theoretical advances—at least to the extent of making available
relatively easy-to-use software. (GeoDa is emerging in ways that will soon contradict
this statement, if it hasn’t already.) For example, in our reanalysis of the FL data,
despite the fact that we have been able to deploy several useful software packages
with which to estimate spatial regression models, we were not able to fully imple-
ment the models we wished to estimate (e.g., properly weighted versions of models 3
and 4). As is evident from some ‘‘holes’’ (labeled ‘‘M’’) in Table 3, the kinds of
regression diagnostics provided by the different packages differ (e.g., S-Plus did not
provide a R2 statistic or AIC score for the weighted spatial error model). Finally,
even when everything else matched up, the R2 statistic provided by SpaceStat dif-
fered from that reported by GeoDa and R, and the AIC score from SpaceStat also
differed, but inconsequentially.

Yet, in the model shown in column 5 of Table 3, we likely have a reasonable re-
estimation of the FL model, one that incorporates both the large-scale spatial het-
erogeneity (through the mean vector Xb) and the small-scale neighbor influences on
child poverty (through the spatial lag process qWu). This model has all the advan-
tages of model 3, but diagnostic statistics (log-likelihood and AIC score) suggest that
it performs marginally better. It is important to say that this model does not alter in
any substantial way the general findings of Friedman and Lichter in the original
analysis. Their conclusions, presented early in this paper, do not change appreciably
when corrected for spatial effects—but they might well have. Models 3 and 5 both
appear to satisfactorily correct the problem of residual dependency (in the FL
model) and are thus more reliable models on which to base those conclusions.
Consequently, our reanalysis of these data provides a more secure understanding of
the way in which this particular set of independent variables jointly determine the
spatial distribution of child poverty in the US. The risk of a child living in a
household with income below the officially established poverty threshold is not
homogeneously distributed across the US. This is obvious from even a passing glance
in Fig. 1. But model 5 in Table 3 provides us some clues about the spatial process
yielding this outcome. As with the original FL regression results, model 5 tells us
about the marginal influences of several important covariates. In addition, the model
(as a spatial error specification) helps us better understand how a combination of
‘‘grouping forces’’ and/or ‘‘grouping responses’’ (discussed above) become strong
participants in this process. In presenting this alternative to the original FL model,
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we have also re-emphasized the need for more sociologists to consider matters of
spatial autocorrelation in analyses using aggregated data. That too is a modest
contribution. Our reanalysis serves as an instructive example of how to approach the
task of examining a structured socioeconomic process in the presence of strong
spatial externalities. Such empirical re-examinations are necessary as new analytic
methodologies emerge (see, for example, Doreian, 1980, 1981; Loftin & Ward,
1983). Indeed, Friedman and Lichter themselves invited and encouraged such
activity vis-à-vis their own contribution when they wrote, ‘‘...[O]ur study provides a
point of departure for additional studies of child poverty and growing spatial eco-
nomic differentiation’’ (1998, p. 106).
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