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CHAPTER 19

EXPLORATIONS IN SPATIAL DEMOGRAPHY

PAUL R. VOSS, KATHERINE J. CURTIS WHITE,
AND ROGER B. HAMMER

INTRODUCTION

Social scientists in many disciplines have noted re-emerging interest
in issues concerning social processes embedded within a spatial context (e.g.,
Messner & Anselin, 2004). In this chapter, we echo and emphasize the long-
standing assertion, found in various forms across numerous disciplines, that special
methods are necessary for the appropriate analysis of spatial data. Attributes of
spatially referenced data generally violate at least one of the assumptions under-
lying the standard regression model, which necessitates both caution regarding
these violations and attention to methods designed to correct for them. We dis-
cuss the nature of the problem, how it arises, how to identify it, and methods by
which one can press forward appropriately with the investigation of such data. We
present what we view as the most important and well-developed concepts of spatial
data analysis and indicate for interested readers where greater detail can be found.
Specifically, we have sought to minimize the presentation of technical material,
including formulae and equations, and, instead, apply the concepts and methods
to an analysis of population change in the Great Plains.

SPATIAL IS SPECIAL

When investigating population change for a large number of spatial units
(e.g., counties), it is the natural inclination of sociologists and demographers to
move from simple descriptive analyses to begin asking such questions as: How
might these data be modeled? How well can I account for variability in attribute
values among geographic units by identifying other covariates of our attribute of
interest? Such analysts have traditionally turned to multivariate regression model-
ing to answer such questions. Regrettably, standard regression approaches to data
for spatial units bring special complications that have not always been appreciated
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or understood. The idea that somehow “spatial is special” is a notion that has begun
only slowly to enter the awareness of quantitative demographers.

Over the past two decades, increasing attention has been drawn to the
fact that spatial data require special analytical approaches. Many of the techniques
documented in standard statistics textbooks and taught in our “methods” class-
rooms unfortunately confront significant difficulties when applied to the analysis
of geospatial data. These problems are summarized by language more familiar to
geographers and regional scientists than to demographers: spatial autocorrelation,
the modifiable areal unit problem, and scale and edge effects. But the emphasis
on “problems” fails to capture the fact that there also is a benefit arising from
the special nature of spatial data. Aspects of space (e.g., distance, proximity, and
interaction), when properly acknowledged and incorporated into one’s model, can
overcome complications of space and error dependence, improve specification of
models based on spatial units, and provide estimates of parameters that are less sub-
ject to statistical bias, inconsistency, or inefficiency. Further, such approaches can
contribute to theoretical notions regarding the role of space in social relationships
and processes.

Although rural demography has long maintained a strong focus on pat-
terns and trends that vary spatially (Voss, 1993, 2004), the field has not been
very sensitive to these more recent analytical issues, and rural demographers have
largely failed to adopt the methods of formal quantitative spatial analysis that have
emerged in the fields of geography, regional science, and spatial econometrics dur-
ing the past decade (Lobao & Saenz, 2002). It is encouraging that such neglect is
waning, as evidenced by the spatial focus of a recent Rural Sociological Society
presidential address (Lobao, 2004).

To illustrate some of these spatial concepts, we examine in this chapter
the correlates of county-level population change in the Great Plains between 1990
and 2000. Details regarding the sample, measures, and theoretical motivations can
be found in White (2003).

A thorough researcher will carefully begin an analysis by exploring the
behavior of the variables of interest using the standard tools of exploratory data
analysis (EDA)—and thus we begin. In the present example, one that will be
used throughout the remainder of the chapter, interest is focused on population
change (measured as the natural log of P2000-Pi99o/ P199o) and a few potentially
useful, theoretically derived covariates of population change: farm dependence,
population age structure, climatological conditions, metropolitan status, county
acreage (natural log) and initial county population (natural log). The latter two
variables are of less substantive interest and are included in the model as possible
controls for heteroskedasticity. »

When undertaking initial EDA explorations of spatial data, in addition to
examining the univariate statistical distributions of the attributes (for normality,
outliers, etc.) and their bivariate relationships with the dependent variable (for
linearity), it also is worthwhile to develop a sense of the spatial distributions of
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Figure 19.1. Spatial Distribution of Population Change among Great Plains
Counties, 1990-2000
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the attribute values. As illustrated in Figure 19.1, the map of population change

%ndlcates that roughly one-in-twelve Great Plains counties suffered population loss
in excess of 10 percent over the decade of the 1990s, while more than one-in-four
coqntlezs witnessed population growth of more than 10 percent during the same
penod. Growth characterizes many of the east-west boundary counties, while loss
is largely concentrated along a north-south axis among the central cc;unties and
along tl}e northern edge of the region. These concentrations lead to two initial
con.clusmns: F'irst, there is sub-regional variation within the larger Great Plains
region, spmethmg we discuss below as spatial heterogeneity. Second, there appears
to be evidence of spatial clustering, such that counties evaeriencing growth seem
to be near o.ther counties experiencing growth while those suffering loss are near
othe'r counties undergoing loss, which we discuss below as possible evidence of
spa.tzal dependence. By mapping our data and reviewing the distributions of the
var{a!ales across space, it becomes evident that spatial patterning, in the form of
positive spatial autocorrelation, will have to be addressed in our m(;deling strategy.

SPATIAL AUTOCORRELATION
Those who have studied time-series analysis will recognize the parallels to

temporal auto_cqrrelation. Typically, when most social phenomena are mapped, lo-
cational proximity usually results in value similarity. High values tend to be located
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near other high values, while low values tend to be located near other low values,
thus exhibiting positive spatial autocorrelation (Cliff & Ord, 1973, 1981). This ap-
pears to be the case with population change in the 1990s within the Great Plains.
Less often, high values may tend to be co-located with low values or vice versa
as “islands” of dissimilarity or in a spatial “checkerboard” pattern that exhibits
negative spatial autocorrelation (see Tolnay et al., 1996). In either case, the units
of analysis in spatial demography likely fail a formal statistical test of randomness
and thus fail to meet a key assumption of classical statistics: independence among
observations. With respect to statistical analyses that presume such independence,
such as standard regression analysis, positive autocorrelation means that the spa-
tially autocorrelated observations bring less information to the model estimation
process than would the same number of independent observations. The greater the
extent of spatial autocorrelation, the more severe is the information loss. Again,
this fact has been known for several decades. For example, early recognition of this
problem is found in a brief paper by census statistician Frederick Stephan, who,
when referring to the use of census tract data in social research, introduced the
problem by analogy to classical sampling theory: “Data of geographic units are tied
together, like bunches of grapes, not separate, like balls in an urn’-(1934, p. 165).

How Does Spatial Autocorrelation Arise?

We have pointed out that positive spatial autocorrelation is very com-
monly a property of mapped social and economic data, whereas negative spatial
autocorrelation is much less commonly observed. A quick explanation for the
presence of spatial autocorrelation can be found in the oft-cited “first law of geog-
raphy,” enunciated by Tobler (1970, p. 236): “Everything is related to everything
else, but near things are more related than distant things.” While useful as a short-
hand reminder, Tobler’s first law is somewhat unsatisfying because it doesn’t tell
us why this phenomenon arises in practice, or what difference it makes. Why, for
example, do state sales tax levels tend to cluster regionally? Why does the percent-
age vote cast for presidential candidates show systematic geographic clustering?
Why do high housing values cluster in some neighborhoods of a large city and low
values in other neighborhoods? Or, as in the case of our example, why is relatively
high growth concentrated in some sub-regions of the Great Plains and low growth
or decline in others? »

While helpful reviews exist on this topic (e.g., Brueckner, 2003; Wrigley
et al., 1996, pp. 30-31), the answers to such questions can only be approximated
with models of the spatial process that inevitably are imperfect. Such answers
generally will be a function not only of the data being analyzed but will depend
strongly on the analyst’s theory about the process, as'well as assumptions under-
lying both the data and the statistical model(s) selected to describe the nature of
the relationships under investigation. For example, the four substantively interest-
ing independent variables selected for our example (farm dependence, population
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age structure, climatological conditions and metropolitan status) and two addi-
thIlfll control variables were not chosen at random but have been identified in
earlier work addressing population change. Our task is to analyze appropriately
the nature of their joint relationship with population change while simultaneous!

accounting (or correcting) for spatial process relationships at work in the data. ¢

Exploratory Spatial Data Analysis

While _much of the-growing literature on spatial data analysis focuses on
matters of spepﬁcation tests, parameter estimation, and advanced tools such as
Monte' Carlo simulation, any proper empirical analysis must begin more simply by
explonqg and understanding one’s data. Continuing our earlier discussion of EDA
many ?t the techniques first codified by John Tukey (1977) and later expanded b):
Tul_<ey s collea_igues (Hoaglin et al., 1983, 1985) are also appropriate for the explo-
ration of spatial data. Once again, however, some of the unique aspects of spatial
dflta make exploratory spatial data analysis (ESDA) a field that has attracted con-
mderable attention in and of itself. The science of creating and interpreting maps
of spatial data, for example, is the topic of a large literature fostered by the devel-
opment over the past 30 years of powerful geographic information systems (GIS)
(Chou, 1.997). In addition, software for creating and testing a variety of neighbor-
hood weights matrices, for generating various measures of spatial autocorrelation
(both glob.al and local), and for obtaining diagnostic results concerning error de-
Pendence in standard regression models are now widely available. This literature
is large and dynamic. Perhaps the best citation that can be provided is to invite
the: reader’s attention to the website of the Center for Spatially Integrated Social
Science (CSISS), a center whose mission is to serve as an ongoing clearinghouse

for software topls, literature, and training opportunities in spatial data analysis
(http://www.csiss.org). ‘

Global and Local Diagnostics

Global measurements—whether they are overall descriptions of attribute
Valges, measures of statistical relationships, or model accuracy assessments—are
derl.ve.d using data for the entire study region. For example, a global Moran’s /
statlsnp is a single measure describing the general extent of spatial clustering of
an atmbutf: across the region, conditional on the specific neighborhood structure
imbeddedin Fhe chosen weights matrix (Moran, 195 0). The global Moran’s / can be
scaled to the interval (—1, 1) where a strong positive value indicates value similarity
among nei ghbors (clustering, or positive spatial autocorrelation), a strong negative
value indicates value dissimilarity (dispersion, or negative spatial aﬁtocorrelation)
and a value near zero suggests no spatial relationship. Tests for significance use,
z-scores and the standard normal distribution. As commonly applied to a full
data set, Moran’s / yields an indication of the extent of overall spatial clustering of
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similar values on a given attribute. Itis a “global” measure of spatial autocorrelation
and, as such, cannot by itself identify where “hot spots” of value clustering exist
within the study region. Since spatial data are easily mapped, it is thus only natural
that techniques have been developed for generating and mapping local counterparts
to many global measurements.

Two useful ESDA tools in spatial data analysis are the Moran Scatterplot
(Aneslin, 1996) and so-called LISA statistics (for Local Indicators of Spatial Asso-
ciation) such as the “local” Moran’s /(Anselin, 1995). These devices are extremely
valuable for understanding the localized extent and nature of spatial clustering in
a data set. Their use logically should precede and inform the process of hypothesis
construction, model specification, estimation, and statistical inference. Rather than
producing a single global statistic or parameter, local analysis generates statistics
or parameters that correspond with researcher-specified smaller-scale local areas
(commonly called “neighborhoods™). It is helpful to re-emphasize that it is the re-
searcher, not the data or some accommodating software program, who defines what
is meant by a local neighborhood. As indicated earlier, this is done by specifying a
matrix of weights (<1) that characterizes the structure of local dependence. There
exists a large literature on the topic of selecting a weights matrix, and Griffith
(1996) is but one helpful resource.

Figure 19.2 shows the Moran scatterplot for the Great Plains dependent
variable: log percent growth for counties from 1990 to 2000. In this exploratory
view, the data are standardized so that units on the graph are expressed in standard
deviations from the mean. The horizontal axis shows the standardized value of
the log percent population change for each county. The vertical axis shows the
standardized value of the average log percent population change for that county’s
“neighbors” as defined by the weights matrix. Neighbors for this illustration are
defined under the “first-order queen” convention, meaning that the neighbors for
any given county “A” are other counties that share a common boundary (or single
point of contact) with “A” in any direction. Importantly, “A” is not considered a
neighbor of itself and is excluded from the average. Counties on the border of the
Great Plains region, as shown in Figure 19.1, are permitted only to have neighbors
within the region. This restriction creates some boundary problems (“edge effects”)
in this analysis, but the topic is not addressed further in this overview. The reader
is referred to any of several articles or texts on spatial data analysis for more
information and ways of dealing with such problems (e.g., Martin, 1987).

The upper right quadrant of the Moran scatterplot shows those counties
with above average growth which share boundaries with neighboring counties that
also have above average growth (high-high). The lower left quadrant shows counties
with below average growth and neighbors with below average growth (low-low).
The lower right quadrant has counties with above average growth surrounded by
counties with below average growth (high-low), and the upper right quadrant has
the reverse (low-high). Anselin (1996) has demonstrated that the slope of the
regression line through these points conveniently expresses the global Moran’s
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Figure 19.2. Moran Scatterplot of Population Change

Moran's I = 0.5416

W_(log) population change
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(log) population change

1 Vgl}le, \yhiph, for our Great Plains example, is 0.54. This statistic is strongly
positive, indicating powerful positive spatial autocorrelation (clustering of like
values). M.ost counties are found in the high-high or low-low quadrants.

Figure 19.3 shows a LISA cluster map which displays in a different way
Fhe same data as the Moran scatterplot of Figure 19.2. The map shows where
in the. Great Plains region the various combinations of high-high /low-high etc
counties are found. Counties where the local Moran statistic is’not signiécaﬁ
(at the .05 level, based on a randomization procedure) are not shaded. Hotspot
clusf(ers of high growth counties surrounded by high growth counties a.re appar-
ent in the sprawling east-central Texas region connecting metropolitan areas of
Dallas-Fort Worth, Austin, San Antonio and Houston-Galveston. Another large
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Figure 19.3. LISA Cluster Map of Population Change
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i int i her, the maps in Figures 19. .
for us at this point is that, taken together, i -
Z?)%l?inn that growth in the Great Plains in the 1990s has conspired .somehoLv to ptz;;]
tition the region into identifiable sub-regions of growth and decline. Such spa
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heterogeneity must be addressed in any further analysis of the data, and we begin
by examining whether there might be parameter regimes that can be associated
with the patterns observed in Figures 19.1 and 19.3.

Geographically Weighted Regression

One of the more recent and fascinating developments in the design of
local statistic§ is the theoretical/conceptual background and associated software
to explore how regression parameters and regression model performance vary
across a study region. Geographically Weighted Regression (GWR) is similar to
a global regression model in that the familiar constant, regression coefficients,
and error term are all present within the regression specification. There are two
ways in which GWR differs from standard global regression, however. First is
the fact that a separate regression is carried out at each location or observation
using only the other observations that lie within a user-specified distance from
that location. Second, the regression specification includes a statistical device that
weights the attributes of nearby counties more highly than it does the attributes of
distant counties. The result is a set of Iocal regression parameters for each county.
The precise implementation of GWR is controllable by the analyst and is far too
detailed for discussion here (see Fotheringham et al., 2002). The important feature
to emphasize, however, is that the output file enables the researcher to examine and
map local parameter estimates and local regression diagnostics, thereby enabling
assessment of the utility of the model for various portions of the larger study region.

Examples of such maps are illustrated in Figures 19.4 through 19.7. Iocal
R? statistics are mapped across the region in Figure 19.4, illustrating those areas
where the model performs well versus those where the model “fit” is less precise.
The local R? statistic in this example ranges widely from 0.230 to 0.740. We
note that the model’s highest performance is found roughly in southern Oklahoma
and in the northwestern Plains counties in western North Dakota and eastern
Montana. Lower model fits are generally found among the boundary counties but
specifically in the Texas Panhandle region, in southern lowa, and, to a lesser extent,
in western Nebraska. When referring back to the distribution of population growth
(Figure 19.1), variation in model fit does not appear to associate closely with either
areas of growth or areas of loss. For instance, the model fits relatively poorly (low
R?) both in the loss (Panhandle) and the growth (southeastern) clusters of Texas
counties, ;

GWR parameter estimates can also be mapped and compared to gain
further insight regarding spatial variation in relationships. We stress that these tools
are exploratory in nature as opposed to explanatory. GWR can be a useful guide in
showing where particular covariates of the response variable contribute strongly
and where they do not. The parameters shown in Figures 19.5 through 19.7 are the
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Figure 19.4. GWR Derived Distribution of Local R* Estimates
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Figure 19.5. GWR Derived Distribution of Intercept Parameter Estimates
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Figure 19.6. GWR Derived Distribution of Far.

m Employment
Parameter Estimates

Farin employment
Parameter values
1-1621-=] 133

B 04910060
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intercept term and those for two of the independent variables, farm employment
and temperature range, respectively. Caution is advised when attributing statistical
significance to the local parameter values because of the hi

gh degree of multiple
hypothesis testing in GWR. Some type of Bonferroni-like adjustment to the critical

values clearly is appropriate. Fotheringham and colleagues suggest rejecting the
null only when t-values approach 4.5 and greater (2002, p. 135).

The map showing the distribution of the intercept parameter (Figure 19.5)
indicates that, controlling for the response to predictive variation from the six
independent variables, the level of the local intercept varies rather dramatically
across the Great Plains (from negative .956 to positive 2.158). Such intercept
heterogeneity suggests the likely presence of an unaccounted interaction in the
model. For example, local intercept values are relatively high for the band of coun-
ties sweeping toward the northeast from southern Texas to northwestern Missouri.
The intercept also is high in the higher growth area around (and north of) the Denver
metropolitan area. Among these counties, the local parameters for a number of our
variables are negative in value and moderately strong (e.g., see Figure 19.6, which
shows local variation of the parameter for the farm employment variable). On the
other hand, local intercept values are relatively low and negative in northern Texas,
southwestern Kansas, and southern Minnesota. One variable appears to be con-
tributing strongly to these lower local intercepts: the temperature range variable.

For this predictor variable, the response of regional growth is strong and positive
(Figure 19.7). '
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Figure 19.7. GWR Derived Distribution of Temperature Range Parameter
Estimates
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While visualizing a regression hyperplane in seven dimen§i0ns is chal-
lenging, to say the least, talking about it in general terms may be easier. An exlilm-
ination of the maps of the GWR-generated local parameters, of Whlch only tf 1iee
are presented in Figures 19.5 through 19.7, suggests the following types of lo-
cal interactions. In the areas of northern Texas, southv_vestern Kansas and southgrn
Minnesota, our Ordinary Least Squares (OLS) regression hyperplane has a positive
slope that is especially strong, marginally, on the tempe.rature range Q1men;101§1.
The positive slope produces a negative intercept valum? in these portions of the
region. On the other hand, in those portions of the region where thp mte'rcelzit is
positive and relatively strong, in southern Texas to northwestgrn Missouri an 1{;
the vicinity of the Denver metropolitan area, the hype}'plane likely has. an overa :
negative slope. These implied interactions might yvell 1.nf.orm a re-§p.e01ﬁc'at101.1 0
our model to accommodate the interactions. While t.hl.S is a promising direction,
we do not embark on this particular path in the remaining analysis Teported here.
Rather, we seek to deal directly with the implied spatial heterogeneity by ﬁttmg_a
trend surface to our data before tackling any spatial dependence that may remain
after modeling the spatial heterogeneity.

Spatial Heterogeneity versus Spatial Dependence

As hinted at in the preceding section, large-scale regional differentiation
among attribute values and/or among parameter values is an important component
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of spatial variation. Most treatments of spatial data analysis refer to such sub-
regional variation as “spatial heterogeneity.” We follow the usual convention of
referring to spatial heterogeneity as the lack of stability across space of one or more
attribute values, more formally expressed as lack of stability in the moments of the
joint probability distribution of the attributes, or as lack of stability of relationships
among the attributes as measured by correlation statistics or regression parameter
values (see Anselin, 1988). Spatial heterogeneity often is a concept referred to
somewhat casually or vaguely—as we are guilty of here. A more precise sense of
what is captured in the notion of spatial heterogeneity is contained in the statistical
concept of spatial stationarity in its various forms (Cressie, 1993). In essence, the
term “heterogeneity” simply acknowledges the common observation that values
of a variable, or values of relationships among variables, are not the same across
space. Few social processes are spatially homogeneous.

In our example, the nature and extent of population change and its asso-
ciations with correlated factors are distributed unequally across the Great Plains.
In particular, the term spatial heterogeneity applies to large-scale trend or drift in
a spatial process, where “large-scale” is taken to mean scales involving distances
that extend well beyond any “neighborhood” structure imposed on the data, as
discussed further below. Spatial heterogeneity often is also referred to as “first-
order variation” or as “first-order spatial effects” in a spatial process (Bailey &
Gatrell, 1995). The inclusionin a regression model of one or more variables might
satisfactorily account for the observed spatial heterogeneity. If population growth
is mainly concentrated in specific types of counties, for example, and if this is
the spatial process dominating our data, then inclusion of a dummy variable to
identify these counties would not only boost the explanatory value of the model
but also would reduce the extent of spatial heterogeneity and, ideally, also reduce
or eliminate heteroskedasticity and spatial autocorrelation among the residuals.
Another approach to deal with large-scale trends is to fit a trend surface to the
data, as we illustrate below.

“Spatial dependence” or “second-order variation” refers to small-scale
spatial effects that manifest as a lack of independence among observations. The
assumption is that dependence among observations derives from spatial interac-
tion among the units of analysis which ideally can be defended theoretically and
which can be statistically captured by a spatially lagged “neighborhood” effect in a
model of the spatial process. Such spatial lags may involve the dependent variable,
one or more of the independent variables, the error term, or some combination of
all three. Properly specified and estimated, such a model with spatial lags is able
to “borrow information” or “borrow strength” from neighboring observations pre-
cisely because of the spatial autocorrelation among the units of analysis (Haining,
2003, p. 36). We do not present the details, but once a spatial lag is included in a re-
gression model to account for spatial dependence in the data, maximum likelihood
estimation (MLE) is usually the appropriate estimator (see Anselin & Bera, 1998).
In our example, a carefully selected variable to account for spatial heterogeneity
in the data might boost the explanatory value of the model and largely remove



420 PAUL R. VOSS ET AL.

the large-scale spatial process, but spatial autocorrelation would persist if a sp.atljal
dependence process also were indicated. In other v.vordsf there Woulfi remain in
the data a more complicated, interactive spatial relat10n§h1p among nei ghbors that
suggests the requirement of some type of autoregressive term in the regression
n. .
Spemﬁca%&c;hile the preceding discussion appears to present a sequential, orderly,
step-by-step process, in practice the situation is more complex. Often.the d?ta
suggest a combination of both first-order and second-order effects or fail t? give
unambiguous clues to one or the other. For example, the map of recent population
change in the Great Plains (Figure 19.1) reveals an uneven _gradatlpn of popula@on
growth and decline in the 1990s that defies any simple and immediate explanation.
Several clusters of counties with high growth are apparent: for egample, east-
central Texas, central Missouri, eastern Colorado—certgmly very different coun-
ties in terms of topography, cultural history, and industrial base. Clustcers of s]gw
growth or population decline are apparent across the 1n0st.northern Plains counties
of Montana, North Dakota, and northwestern Minnesota, in much of Nebraska and
Kansas, and in the Texas Panhandle. Might these clusters be a.ccou:lted for by es-
tablished historical or legacy effects, and might the_y be ‘fexplalged by a few well
chosen independent variables? Or might there exist ne'lghbor influences among
these counties, such as spatial spillovers or diffusion, wh}0h account fo.r the spatial
pattern? The ﬁrst question inguires about possible spatial heterogeneity, the sec-
ond about possible spatial dependence. For Whatever. reasons, parts of the Great
Plains reveal relatively high growth, while others ex.h1b1t populatlm} decline. The
goal of the researcher is to identify potential covariates of popul:?mon cha}lge in
the region and to explain the variation in growth among Great Plains ‘countl(;:slps-
ing a combination of traditional modeling approaches and newer spatial modeling
approaChliségardless of the analyst’s theoretical notions about the process giving
rise to the observed spatial pattern, the analysis generally proc‘eeds as follows. Fl.I‘St,
based on a combination of theory and review of the re]evanF literature, a c.lefensfple
OLS regression model is fit to the data, and a variety of _remdual-based dlagnostlcs
are examined, including a test for spatial autocorrelation. Test.s for spatial error
dependence generally take two forms: (1) a general test for spatial autocorrelat'lon
of residuals against the alternative of no autocorrelation, anq (2) asetoftests agan;lst
a specific form of spatial process. The first such gengrahzed test usgally is the
calculation of a region-wide or “global” measure of spatial autocmfrelatlon,_ suchas
the Moran’s [ statistic, as discussed above. The second set of spec':lﬁc tests is based
on the maximum likelihood principle (see Anselin, 2()_01; Anselin & Bera, 1998).
We comment on these tests in interpreting the regression model.re'sults below. .
Unfortunately, in the cross sectiohal context, no statistical tools exist
to inform the analyst which spatial process, heterogeneity or dependen_ce, 'hgs
generated the data at hand (Bailey & Gatrell., 1995, pp. 32-33). That is, 1t.1s1
not mathematically possible to differentiate an independent heterogeneous spatia
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process from a dependent homogeneous spatial process. As mapped realizations,
they may appear quite identical. Either process alone or both acting together could
be responsible for the spatial pattern shown in Figure 19.1. The story is less bleak
if repeated observations are available for cross sectional data. There may, under
such conditions, be sufficient data to distinguish between the two spatial processes.
Moreg)ver, the distinction between large-scale variation and small-scale variation
in an attribute is rarely easily determined. It depends in part on how the analyst
has chosen to define “neighborhood” structure. As described earlier, the latter
is expressed formally in a proximity or weights matrix. This matrix captures the
researcher’s view of the nature of neighboring influences. The actual degree of such
influences is captured by the data and a spatial parameter to be estimated along with
other parameters. A strong theoretical framework and some testing of alternatives
should guide the choice of spatial wei ghts, as they play a strong role in determining
statistics or parameter values derived using a specific weights matrix. This matrix
is required for the calculation of spatial autocorrelation statistics, such as the
Moran’s 7, and for specifying and estimating regression models incorporating
spatial dependence terms to account for spatial autocorrelation in the data.

Thus far in our discussion, spatial autocorrelation has been described as
something that arises from a substantive spatial process. In the case of spatial het-
erogeneity, there are presumed forces (geophysical, cultural, social, or €conomic)
that somehow work to constrain or otherwise serve as influences causing individu-
als, families, or counties with similar attribute bundles to find themselves physically
near one another. In the case of spatial dependence, presumed interaction among
individuals results in spatial clustering. The large body of literature springing from
the theory of social adoption/diffusion (Rogers, 1962), for example, captures well
the notion of spatial dependence.

Spatial autocorrelation, however, can also arise as a nuisance (Anselin,

1988). Most commonly this occurs when the underlying spatial process creates
regions of value clustering that are much larger than the units of observation
chosen by, or available to, the analyst. An example of such nuisance autocorrelation
might be present in the distribution of population growth in the Great Plains. The
large cluster of high growth counties in central Texas (Figure 19.1) is discussed
above as a sub-region contributing to spatial heterogeneity, and this sub-region
contributes heavily to the fairly high global Moran’s Istatistic. Stepping back from
the data for a moment, one quickly observes that this sub-region of hi gh growth is
considerably more extensive than is the particular lens (counties) through which the
process is viewed. When units of analysis are smaller than the boundaries of areas
having high or low attribute values, spatial autocorrelation in the observations
is inevitable. Such nuisance autocorrelation must somehow be recognized and
eventually brought into the formal analysis of the data. Customarily this is handled
in models of spatial heterogeneity with the use of dummy variables to identify
different “spatial regimes” or through the incorporation of a “surface trend” as
part of the regression model (Anselin, 1988).
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The aim of the researcher is to specify and estimate a model that rea-
sonably accounts for or incorporates the spatial effects present in the data. These
effects can be modeled separately or jointly as spatial heterogeneity and spatial
dependence. When first examining a spatial relationship, the researcher must ask
whether the association appears to be a reaction or an interaction, characteristic
of heterogeneity or spatial dependence, respectively. Anselin, referring to earlier
studies, discusses this difference using the terms “apparent contagion” (spatial
heterogeneity) and “real contagion” (spatial dependence) (1988, p. 15).

Ifthe association is merely areaction to some geophysical, cultural, social,
or economic force that works to create spatial patterning, then a modeling strategy
with a standard regression structure may be appropriate. Often it is discovered
that independent variables in the model—themselves spatially autocorrelated—
can account satisfactorily for the observed spatial autocorrelation in the dependent
variable. In such a situation, regression residuals generally are found to be neg-
ligibly autocorrelated, and standard regression approaches are adequate. At other
times, the researcher might introduce variables that capture the influence of the

geophysical or other forces underlying the spatial effect. Fotheringham, Brunsdon
and Charlton provide several examples—GWR among them—to approach this par-
ticular issue (2002, pp. 15-24). As a general matter, it is wise practice to model,
perhaps with a simple regression specification, the heterogeneity of a spatial pro-
cess before spatial dependence modeling is undertaken. The reason for this is that
spatial dependence modeling assumes a homogeneous (technically, stationary)
spatial process.
1f, on the other hand, the association is an interaction suggesting some
type of formal dependency among areal units, then a modeling strategy with a
spatially dependent covariance structure is the way to proceed. In this instance,
controlling for heterogeneity likely will not fully remove the spatial effects within
the data. An alternative is needed—a spatially oriented approach that formally
incorporates a spatially lagged dependent variable or spatially lagged error term.
In a conceptual way, this approach is a spatial analogue to the treatment of temporal
variables in time series analysis. The added dimensionality of geographic space
and the absence of any form of natural order in spatial data, however, render many
statistical procedures in time series analysis inappropriate in spatial analysis. For
details on spatial dependence modeling, the reader is advised to begin with Anselin
(1988), Anselin & Bera (1998), and Anselin (2003). This literature is expanding
rapidly. '
Concluding our discussion of population change in the Great:Plains, we
attempt to bring several of these thoughts together by presenting some regression
results in Table 19.1. The table has four columns of regression parameter values
and some useful diagnostic terms. In the table, we take the dependent variable,
logged population growth in the 1990s, and regress this on several independent
variables. The fitst column shows the results of a standard OLS regression. We take
initial satisfaction in noting that the OLS model performs reasonably well. Several
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0.096
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%0 . . 32*"’ . parameter estimates are strongly significant, parameter signs are as anticipated,
S| 8 ~1 ~ o A and the adjusted R? statistic achieves a respectable level of 0.337. Having antici-
coooo2 oo S n . . . . .
S 288888 © o — 9 pated and checked for it, however, we quickly note a problem: regression residuals
! SSSo o SSS vwaws show strong spatial autocorrelation (Moran’s I =0.363), a clear indication that
8, (= e < = ~ o O W g. P . . .
n =2 the model violates at least one of the assumptions underlying standard linear re-
p ying
! gression. The Moran test tells us that the residuals are not independent. Moreover,
the Koenker-Bassett test for heteroskedasticity indicates that the residuals also are
not distributed identically. Both are serious violations of OLS assumptions and
= . Fa suggest that inferences drawn from the model in column one could be seriously
£ o § i i flawed
Hi 9505858560 = 5 8 ' . . . . .
i 28 § § § § % g K] 8 = Comparing the residual spatial autocorrelation (/ = 0.363) with the spa-
ks 2 g SgogSsSs S mRy ° 2 tial autocorrelation for the dependent variable (reported above, I = 0.542) tells us
) = ' =3 2 that spatial autocorrelation in one or more of our independent variables actually
' _§ “explains” a portion of the spatial autocorrelation in the dependent variable. As
9 indicated above, it frequently is the case that the independent variables in a re-
g ression model can almost completel account for the spatial autocorrelation in a
‘ 2 g Ipletely ¢sp :
o2 - . i 2 dependent variable, thus removing a problematic spatially autocorrelated residual.
. * - . . . .
"i Bl 45~ i o oo £ B E However, in our case, the regressors have not satisfactorily accounted for obvious
Qe 28888 o < SEar < spatial heterogeneity and/or dependence in the data, and a correction to the model
S oy ESSSSS e 4 : p 3 y P 1 dacc
83| 333338 CoLRTCT 2 clearly is indicated. But what type of correction? At this point one’s theory of the
©o0 va [; process under investigation is asked to do some heavy lifting. Does the residual
l gj) dependence in the model likely stem from omitted variables on the right-hand side
n‘; of the regression specification, thus suggesting the utility of a spatial error model?
5 If so, we might pause to ask, what variables? On the other hand, might there be
. N . é spillover influences among growing counties or declining counties that directly
* N . .
o - im ?n “ n :5;? A influence the growth rates of their neighbors? Fortunately, to supplement our the-
= P F23| g~ ory about the process, however strong, we receive some additional guidance from
o SS9 Q999 E %‘ other diagnostic statistics applied to the residuals in the OLS regression.,
RS R - Two such regression diagnostics are shown at the bottom of the first
£ 2 g Shostics ; ;
' < g column: Lagrange Multiplier test statistics which, for this example, suggest a
. & % reference for a spatial lag specification a lagged dependent variable term on
- % prefe p g spe  lagged dep :
g = = g the right-hand side) over a spatial error specification (alagged error term). While
RASH IR often very helpful, these dia nostic statistics are also known to be unreliable in
2 Ty help g :
—_ ‘85 \é 5 the presence of unresolved heterogeneity in the model. We therefore have added a
? @ N1 I b second-order polynomial trend surface to the OLS model in the hope of capturing
- *® . . . .
%‘ 2 B =3 é at least a portion of the spatial heterogeneity in the data.
g - g 2 E“% % | 2 Using ESDA software we examined the shape of the north-south and
3 2 5 £ § 5 8 @) Vv 2 east-west marginal distributions of the dependent variable, and on that basis we
S & ﬁ;‘ & = E 2 g) §D' ;C“ 2 chose a second-order trend surface and added to our OLS model five variables
= o b ;.:.31 - 2 =3 E S35l vt expressing linear and nonlinear aspects of the geographic centroid of each county:
> 'g 'g 2 - ,_"]5 22 2 § PR 'g latitude, longitude, latitude-squared, longitude-squared, and latitude-x-longitude
7] = = ;
S ) gn = '% s 3 g 2o .§ '§ Z_Q (column two of Table 19.1). Few of the parameters of the added variables are
~ = =) a, = _ =
S S 8 3 & & ETI5<Resl R

statistically significant. Understandably, there is a correlation between latitude,
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a north-south variable, and the temperature range variable. The addition of the
geographic variables thus reduces the significance of the latter, and latitude and
its square are not significant contributors with the temperature variable in the
model. Other parameters also change in the shift from column one to column two.
Quite interestingly, after controlling for the geographic variables, county acreage
assumes significance in the anticipated direction.

Yet the model in column two remains unsatisfactory. The Moran’s 7 is
modestly reduced, but it and the heteroskedasticity test both suggest the need to
deal with spatial dependence. The model, when augmented with the trend sur-
face variables (column two), unambiguously suggests dependence in the form of a
spatially lagged dependent variable. Yet heteroskedasticity remains high, thus re-
ducing our confidence in the Lagrange Multiplier tests. Consequently we present
both a spatial error model (column three, Table 19.1) and a spatial lag model (col-
umn four), partly as a concession to our uncertainty about the process but partly
also to see what additional understanding we might glean by examining both the
spatial error and lag specifications.

We comment first on results of the spatial error model shown in column
three. In this specification, the error variance-covariance matrix is assumed to have
non-zero off-diagonal terms, thus permitting the extent of autocorrelation in the
errors to be estimated by a parameter, A. The underlying assumption in the model,
apart from those assumptions justifying a linear specification and the particular set
of selected independent variables, is that spatial autocorrelation in the dependent
variable is caused by one or more spatially autocorrelated “omitted variables” on
the right-hand side of the regression specification. Such a specification is often

appropriate in the absence of a theoretical rationale for assuming interaction de-
pendence in the dependent variable. If indeed a spatial error specification is the
“correct” specification for the process, then estimated parameters from the OLS re-
gression are unbiased but inefficient, with standard errors of parameter estimates
downwardly biased in the presence of positive spatial autocorrelation. We note
that the parameter estimates in column three are modestly different from those in

column two. Most notably, both the initial population and acreage variables lose
their significance, and the only remaining strong substantive parameter is that for
our key independent variable, farm employment. A higher likelihood and lower
(more negative) Akaike Information Criterion (AIC) score in column three are
éncouraging, but the pseudo R? statistic is considerably lower than achieved in
the OLS models. We note two additional desirable features of this model: the spa-
tial error parameter (1) is strong, and the model has eliminated any diagnostic
evidence of a remaining spatial lag influence, because the Lagrange Multiplier test
for remaining lag specification is small and not statistically significant. Aside from
the remaining heteroskecasticity, the model appears to be a plausible alternative
to the OLS specification.

We now comment on the spatial lag model shown in column four, 2
model we anticipate from the OLS diagnostics to be the appropriate model. In this
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SUMMARY AND CONCLUSIONS

In this chapter, we } i
o d nave discussed the
Etatlve' demography. A re-emerging interest in
Y an increasing number of demographers seeki
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the re-emergence of interest in spatial demography is a part, suggests an exciting
future for quantitative demographers.

ENDNOTES

1. Please direct all correspondence to Paul R. Voss at 316 Agriculture Hall, 1450 Linden
Drive, Madison, W1, 53706, or voss@ssc.wisc.edu. The authors extend their appreciation
to David Long and Nick Fisher for assistance and advice regarding the GIS applications
and spatial modeling for the Great Plains working illustration, to Jeremy White for graphic
support, and to Glenn Deane for extensive comments on eatlier drafts. This research was
supported in part by the U.S. Department of Agriculture, Hatch Grant WIS04536, by the
National Institute for Child Health and Human Development, Center Grant HD05876 and
Training Grant HD07014, and by the University of Wisconsin Center for Demography
and Ecology, through its Geographic Information and Analysis Core.

2. The county boundaries used throughout this example refer to 1900 boundaries since the
example is taken from a larger, historic project.
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