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Preface

This workbook contains a set of laboratory exercises initally developed for
graduate courses in Spatial Econometrics and Advanced Spatial Analysis
at the University of Illinois, as well as for the ICPSR Summer Program
course on Spatial Regression Analysis. It consists of a series of brief tutorials
and worked examples using R and its packages spdep for spatial regression
analysis and spgwr for geographically weighted regression.

Some of these materials were included in earlier tutorials available on the
SAL web site. In addition, the workbook incorporates all exercise materials
for the course ACE 492SE, Spatial Econometrics, offered during the Fall 2003
and Spring 2005 semesters in the Department of Agricultural and Consumer
Economics at the University of Illinois, Urbana-Champaign. There may be
slight discrepancies due to changes in the version of R and spdep. In case of
doubt, the latest document available on the SAL web site should always be
referred to as it supersedes all previous tutorial materials.

The examples and practice exercises use the sample data sets that are
available from the SAL “stuff” web site. They are listed on and can be down-
loaded from http://sal.uiuc.edu/stuff/stuff-sum/data. The main purpose of
these sample data is to illustrate the features of the software. Readers are
strongly encouraged to use their own data sets for the practice exercises.

Warning: These notes are not polished, and remain very much in bullet
style. They are intended to provide hints and additional pointers beyond
what is available in the help files and the other tutorials. They also serve
to define a sequence of tasks and techniques that can be covered during a
given lab session. They are “in progress” and are still undergoing changes.

The development of this workbook has been facilitated by the continued
research support through the U.S. National Science Foundation grant BCS-
9978058 to the Center for Spatially Integrated Social Science (CSISS).

vi



Exercise 1

Getting Started in R

1.1 Objectives

These notes are the first in a series to help you get started and working in
R to carry out spatial regression analysis. The objective is that you work
through the various examples at your own pace. This chapter and later ones
will refer to the two short R tutorials available on SAL “stuff” web site, as
well as to the Introduction to R (Venables et al. 2004), available from the
CRAN site. I will refer to Venables et al. (2004) as the “Introduction”
tutorial. I will refer to the other tutorials as the “Data” tutorial (Data and
spatial weights in spdep, Anselin 2003a), and the “Regression” tutorial (An
introduction to spatial regression analysis in R, Anselin 2003b). Further
details on the spdep package can be found in Bivand and Gebhardt (2000),
Bivand (2001, 2002a,b), and Bivand and Portnov (2004).

1.2 Conventions and General Advice

Some notational conventions:

• The command line will be shown as > followed by an R command.

• Command line contents will be in monospaced font.

• File names and file path names will be in italics.

A few general pointers:

• Create a separate directory for your work in R. Specify that directory
as your starting directory in the R shortcut, as illustrated on p. 2 of
the Regression tutorial.



• Know how to quit: >q() from the command line, or File > Exit
using the R GUI.

• Know how to get help. One option is to invoke >help.start(). This
launches your default browser as an interface to HTML help pages.
Another option is to invoke help on a specific function or data set as
>help(name of function). A powerful feature is to use fuzzy search,
so that you don’t have to know the exact command you need (if that
is what you are looking for in the first place).

• A useful way to find out more how a command works is to cut and
past sample code that is contained in the help.

• The assignment symbol is <-. This assigns the result of what it done
on the RHS to the “object” on the LHS. Often it may seem like noth-
ing happens after you run a function. Typically that is because the
result was assigned to an object without an explicit call to print or
summary. After this assignment you manipulate the object, e.g., to
print or summarize the results.

1.3 Sample Session

As a first orientation, work through the sample sesssion in Venables et al.
(2004), Appendix A. This is a good way to get an idea of what R can do
and how it works.

You can either follow along in the pdf file, or you can open the Introduc-
tion in HTML format. To do the latter, invoke the HTML help command
by selecting (>help.start()), and click on the entry “An Introduction to
R,” and select “A sample session”.

This set of examples requires a specific sample data set, morley.tab. The
tutorial asks you to copy that file to your working directory. In the cur-
rent version of R (2.0.1) all sample data sets are contained in the datasets
package. To make it available, enter >library(datasets) followed by
>data(morley). All the variables in the morley data sets should then be
available. Once you complete this, either type the commands from the sam-
ple session on the command line (to get used to the experience of unforgiven
typos) or cut and paste from the HTML file. Needless to say, the latter is
the preferred approach. Note that when using the morley data set from the
datasets package, you need to attach(morley) to get direct access to the
variables. At that point, you no longer need to specify data=mm as shown
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in the sample code (if you copy the commands from the html help file, this
will give an error message).

After going through the sample session, you may want to experiment
with some of the commands. Look up the specifics using help( ) and cut
and paste code from the examples to see how it works. You may also want
to run some demo( ) for applications (not all of them have a demo function
implemented). For example, a nice illustration of the graphics capability is
demo(graphics).

3



Exercise 2

Getting Your Data and
Weights Into R

2.1 Objectives

The purpose of this exercise is to provide guidance in turning your data and
spatial weights files into usable objects in R, and to carry out some basic
data and weights manipulations. The assumption is that you have the data
originally as shape files and will construct the weights files in GeoDa. Of
course, R has its own set of functions to create an analyze spatial weights,
and we will consider those in a separate exercise (see also the Data tutorial).

You should create a new working directory for your current R project and
make sure all files (data files and weights files) are copied to that directory.
This is not absolutely necessary, but it’s a good idea, since it avoids problems
with path names, etc.

You will be using the police sample data set from the SAL data archive.
Make sure you download the file and unzip it into your working directory.
After unzipping the file, check the police.html file to become familiar with
the contents of the data set.

2.2 Getting Data and Weights File Ready

You first need to export the data from the shape file format to an ascii file
that R can read. You also need to create some weights files using GeoDa. A
similar exercise is described in the Data tutorial, using older versions of R
and spdep.
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2.2.1 Exporting Data with GeoDa

Load the police.shp file into GeoDa, with FIPSNO as the Key Variable.
Select Tools > Data Export > Ascii. In the dialog, specify police.dbf
as the input file and police.txt as the output file. Select all variables,
except AREA, CNTY , CNTY ID and PERIMETER. Click on Export and Done to
finish. Check the contents of the police.txt file and make sure it shows
82,12 on the first line and the variable names on the second line. The data,
record by record, and comma-delimited make up the remainder. Copy the
file to the R working directory if it is not there already.

2.2.2 Creating the Spatial Weights in GeoDa

For this exercise, create two spatial weights files for the police data set,
one based on rook contiguity, the other on 5 nearest neighbors. Use FIPNO
as the ID variable. Call these files policerook.gal and policek5.gwt,
respectively. See the instructions in theGeoDa Workbook for details. Make
sure you save (or copy) the files to the working directory for your R project.

2.3 Creating a Data Frame

2.3.1 Command Line

In R, the easiest way to create a data frame from a comma-delimited ascii
file is to use a variant of the read.table function that takes into account
the presence of the comma. This is the read.csv function. Check out
>help(read.csv) to see all the details and options. The files created by
GeoDa contain a header line (header=TRUE) and an extra first line that
R doesn’t need (the line with the 82,12). You avoid reading this line by
setting the skip option to 1. The proper command to read the file is then:

>police <- read.csv("police.txt",header=TRUE,skip=1)

As usual, nothing seems to happen when you enter this, but you can check
the presence of the new police object with a summary command:

> summary(police)
FIPSNO POLICE POP TAX

Min. :28001 Min. : 49.0 Min. : 2500 Min. : 81.0
1st Qu.:28042 1st Qu.: 291.5 1st Qu.: 13275 1st Qu.:106.2
Median :28082 Median : 432.5 Median : 20700 Median :125.5
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Mean :28082 Mean : 927.8 Mean : 31311 Mean :142.2
3rd Qu.:28122 3rd Qu.: 955.8 3rd Qu.: 35850 3rd Qu.:156.5
Max. :28163 Max. :10971.0 Max. :253100 Max. :674.0
...

Also, an >ls() command will reveal "police" as one of the objects in
your work space.

You can specify a variable to serve as the row name in the data frame,
but I usually prefer not to do that. The option is row.names="varname".

2.3.2 Writing a Function

The real power of R is obtained through writing functions that carry out
repetitive actions. To practice writing functions, you will write a simple
procedure to turn a GeoDa text output file into an R data frame. You will
then “compile” it to make it part of your R environment. At that point, you
can invoke it in the same way as any other built-in R function.

Use any text editor (e.g., Notepad or similar) to create a text file, say
read.geoda.R. Even if you use a “real” word processor, make sure to save
the file as pure text, so that no extra characters sneak in.

Enter the following lines (lines starting with # are comments and you
can skip those to minimize typing):

# read.geoda
# helper function to read GeoDa export files
# specify input file = file
# default is no row names, specify row names as second parameter if needed
# example: balt <- read.geoda("baltim.txt")
# balt <- read.geoda("baltim.txt","STATION")

read.geoda <- function(file,row.names=NULL)
{

read.csv(file=file,header=TRUE,skip=1,row.names=row.names)
}

The read.geoda function simply calls the standard read.csv function
with some preset options. Note how the file is a required parameter, but
the row.names can be omitted, since it is set to NULL as the default. The
way the row.names is used in the argument list requires only that the name
of the variable be specified, no need to write row.names=.

6



To make the function part of your environment, you must first “compile”
it with the R source command. Make sure the file read.geoda.R is in your
working directory and enter:

> source("read.geoda.R")

The read.geoda function is now available and can be invoked directly. Note
that the R file extension is only for the text file that contains the code, the
function as defined in that file does not have an R extension. So, don’t use
read.geoda.R as the function name. To practice, first remove the current
police object using the >rm(police) command. Check that it is really
gone by trying a summary(police). You should get

> summary(police)
Error in summary(police) : Object "police" not found

Next, recreate the police object with:

> police <- read.geoda("police.txt")

You can again make sure it is there with a summary command or by using
ls().

2.4 Creating a Neighbor List from a GAL File

To manipulate spatial weights, you will need to load the spdep package.
Of course, this assumes that you previously installed it (see the R tutorials
on how to do this). To load the package, use the library command as
illustrated below:

> library(spdep)
Loading required package: tripack
Loading required package: sp
Loading required package: maptools
Loading required package: foreign
Loading required package: boot
Loading required package: Matrix
Loading required package: lattice

Attaching package: ’lattice’
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The following object(s) are masked from package:boot :

melanoma

>

You may also receive a warning:

The following object(s) are masked _by_ .GlobalEnv :

read.geoda

which is because the read.geoda function you just created conflicts with the
function of the same name that is included in the latest version of spdep .1 If
you did not source read.geoda.R, you will not have the warning. Note that
the functions to read spatial weights have undergone several changes since
the earlier Data tutorial was written. Specifically, the revised read.gal
function can now read new-style GAL weights files, that is, files created by
GeoDa. This workbook uses the most current version of these functions.

2.4.1 Using read.gal

Check out the features and parameters of the new read.gal function with
the help(read.gal) command. You will see that there are three param-
eters: the name of the input file, a region.id and an override.id. The
main purpose of these parameters is to avoid having to assume that the data
set (the data frame) and the weights file have their observations in the same
order. In GeoDa, the ID variable creates a key that can be matched with
a corresponding variable in a data set to ensure the correct order. This is
not an issue when both the data set and the weights are created together by
GeoDa, as you just did, but it can be a problem when this is not the case.

For our purposes, it will suffice to set the override.id = TRUE, rather
than the default FALSE to force spdep to use the new GeoDa GAL weights
format. For example, with the policerook.GAL file as input, this becomes:2

> polgal <- read.gal("policerook.GAL",override.id=TRUE)

1These functions are basically the same, except that the “official” version has skip =

0 as the default. So, to use the read.geoda function from spdep, make sure to set the
option skip = 1.

2Make sure to check the spelling of the file name, specifically, whether the GAL file
extension is in caps or lowercase. R is case sensitive.
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This creates polgal as a neighbor list object. Technically, this is a list of
lists, one for each observation, containing a list of the neighbors. In fact, it
consists of more than just the neighbor information, and contains a list of
ID values, and some metadata, as an attributes command reveals:

> attributes(polgal)
$class
[1] "nb"

$region.id
[1] "28003" "28141" "28139" "28009" "28033" "28093" "28143" "28137" "28117"
[10] "28145" "28071" "28107" "28027" "28081" "28119" "28057" "28115" "28161"
[19] "28135" "28013" "28011" "28095" "28017" "28133" "28043" "28083" "28025"
[28] "28087" "28155" "28015" "28097" "28105" "28151" "28019" "28051" "28053"
[37] "28007" "28103" "28159" "28125" "28163" "28055" "28099" "28079" "28069"
[46] "28089" "28123" "28149" "28121" "28075" "28101" "28049" "28061" "28023"
[55] "28129" "28021" "28127" "28029" "28153" "28063" "28067" "28031" "28065"
[64] "28077" "28001" "28085" "28037" "28091" "28073" "28035" "28111" "28041"
[73] "28157" "28005" "28113" "28147" "28109" "28039" "28131" "28059" "28047"
[82] "28045"

$GeoDa
$GeoDa$shpfile
[1] "police"

$GeoDa$ind
[1] "FIPSNO"

$gal
[1] TRUE

$call
[1] TRUE

$sym
[1] TRUE

When you print the neighbor list, you no longer get a complete listing
of its contents, as was the case in earlier versions. Instead, a summary-like
overview of its main characteristics is listed:
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> print(polgal)
Neighbour list object:
Number of regions: 82
Number of nonzero links: 402
Percentage nonzero weights: 5.978584
Average number of links: 4.902439

This may change again in the future.

2.4.2 Weights Characteristics

The characteristics of the weights file are obtained with the usual summary
command:

> summary(polgal)
Neighbour list object:
Number of regions: 82
Number of nonzero links: 402
Percentage nonzero weights: 5.978584
Average number of links: 4.902439
Link number distribution:

2 3 4 5 6 7
1 13 16 23 21 8
1 least connected region:
28045 with 2 links
8 most connected regions:
28145 28071 28135 28043 28155 28007 28163 28085 with 7 links

Note how the link number distribution and summary of the connected-
ness structure use the region.id values to identify the observations. If you
use Tools > Weights > Properties in GeoDa, you will observe the same
frequency distribution in the link histogram.

2.5 Creating a Neighbor List from a GWT File

The new function read.gwt2nb included in the latest versions of spdep
(included since the Data tutorial) is designed to convert a GWT weights file
into a neighbor list object.
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2.5.1 Using read.gwt2nb

The function read.gwt2nb takes as arguments the file name for the GWT
file and the name of an ID variable, region.id. The latter must be “avail-
able” in your workspace. This is achieved by “attaching” the data frame
that contains the variable. In our case, this is the police data frame. By
attaching the data frame, the variables can be accessed by their name, e.g.,
as FIPSNO, instead of the more cumbersome police$FIPSNO. Attach the
police data frame as:

> attach(police)

Make sure it worked by trying a summary of a variable, for example:

> summary(POLICE)
Min. 1st Qu. Median Mean 3rd Qu. Max.
49.0 291.5 432.5 927.8 955.8 10970.0

Now, turn the policek5.GWT file into a neighbor list, using FIPSNO as
the region.id, and followed by a summary, as:

> polgwt <- read.gwt2nb("policek5.GWT",region.id=FIPSNO)
> summary(polgwt)
Neighbour list object:
Number of regions: 82
Number of nonzero links: 410
Percentage nonzero weights: 6.097561
Average number of links: 5
Non-symmetric neighbours list
Link number distribution:

5
82
82 least connected regions:
28003 28141 28139 28009 28033 28093 28143 28137
... 28039 28131 28059 28047 28045 with 5 links
82 most connected regions:
28003 28141 28139 28009 28033 28093 28143 28137
... 28039 28131 28059 28047 28045 with 5 links
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2.5.2 Checking for Symmetry of a Neighbor List

A useful function is a check for the symmetry of the neighbor list. Spatial
weights based on contiguity should be symmetric, whereas weights derived
from a k-nearest neighbor relation are typically not symmetric.

The is.symmetric.nb function in spdep implements this check. It takes
the name of the neighbor object as argument. In our example, for the GAL-
based weights:

> print(is.symmetric.nb(polgal))
[1] TRUE

and for the GWT-based weights,

> print(is.symmetric.nb(polgwt))
Non matching contiguities: 2 and 14
Non matching contiguities: 3 and 4
Non matching contiguities: 6 and 17
...
Non matching contiguities: 82 and 79
Non-symmetric neighbours list
[1] FALSE

2.6 Practice

Try the creation of a data frame, GAL-based neighbor lists and GWT-based
neighbor lists for one of the other polygon sample data sets, such as the St
Louis homicide data (stl hom). Alternatively, try it on your own data set.
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Exercise 3

Spatial Autocorrelation
Analysis in R

3.1 Objectives

The purpose of this exercise is to illustrate how descriptive spatial autocor-
relation analysis can be carried out in the R package spdep. We will also
begin exploring some basic programming techniques in R, and start using
plotting commands to design customized graphs.

The examples below all use the built-in columbus data set from spdep.
Before trying the commands, make sure spdep is loaded by typing:

> spdep()
[1] "spdep, version 0.4-2, 2007-03-26"

If spdep is not loaded, you will get an error message. Also, load the colum-
bus data set and attach it so that you can refer to the variables by name:

> data(columbus)
> attach(columbus)

For the practice sessions, you will be using the data frame for the police
data set and the GAL based neighbor list constructed in Exercise 2.

3.2 Converting Neighbor Lists to Spatial Weights

The neighbor list (an object of class nb) considered in Exercise 2 is only one
of several classes that handle spatial contiguity information in spdep. It is
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primarily intended to store information on the ID of the neighbor for each
observation. For the spatial autocorrelation tests and spatial diagnostics in
regression analysis, a different type of object is used, referred to as a spatial
weights object (an object of class listw).

One converts an nb object into a listw object by means of the nb2listw
function. This function has several options, and the defaults are not neces-
sarily what one wants. An excerpt of help(nb2listw) shows the parameter
list and the default settings:

Usage:

nb2listw(neighbours, glist=NULL, style="W", zero.policy=FALSE)

Arguments:

neighbours: an object of class ’nb’
glist: list of general weights corresponding to neighbours
style: ’style’ can take values W, B, C, U, and S
zero.policy: If FALSE stop with error for any empty neighbour sets, if

TRUE permit the weights list to be formed with zero-length
weights vectors

Two things to watch out for is to make sure that the “islands” are handled
appropriately, since this affects future analysis. The default is to have any
islands induce missing value codes through zero.policy=FALSE, which will
stop the program when islands are encountered. To allow islands, make sure
to explicitly set zero.policy=TRUE. As before, if you are happy with the
default settings, there is no need to specify any of the parameters, and a
simple nb2listw(neighbor object) will do.

3.2.1 Example

In the built-in columbus data set, the object col.gal.nb is a neighbor
list for queen contiguity.1 Since there are no islands in Columbus and the
default of row-standardization (style="W") is fine, we only need to specify
the neighbor list name:

> colqueen <- nb2listw(col.gal.nb)

1Note that the queen contiguity weights are the ones originally included with the
columbus data set on the now deprecated geog55.geog.uiuc.edu ftp site. These weights
differ slightly from the ones constructed by GeoDa.
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A check on the class of colqueen reveals that it is indeed an object of
class listw:

> class(colqueen)
[1] "listw" "nb"

and summary gives the same connectedness information as before for the
nb object. However, note how several summary measures of the weights
have been precomputed, such as the various matrix traces used in the test
statistics, more precisely, nn, S0, S1 and S2:

> summary(colqueen)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 49
Number of nonzero links: 230
Percentage nonzero weights: 9.579342
Average number of links: 4.693878
Link number distribution:

2 3 4 5 6 7 8 9 10
7 7 13 4 9 6 1 1 1
7 least connected regions:
1005 1008 1045 1047 1049 1048 1015 with 2 links
1 most connected region:
1017 with 10 links

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 49 2401 49 23.48489 204.6687

Finally, to see the actual weights contained in the object, use colqueen$weights,
which is a list of lists of spatial weights for each observation:

> colqueen$weights
[[1]]
[1] 0.5 0.5

[[2]]
[1] 0.3333333 0.3333333 0.3333333
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[[3]]
[1] 0.25 0.25 0.25 0.25
...

3.2.2 Practice

Use the polgal neighbor list object created in Exercise 2 for the police
data set to turn it into a listw object and check its characteristics. If you
did not save polgal in your work space, you will need to recreate it from
the policerook.GAL file (follow the directions in in Section 2.4.1 on p. 8).
The results are listed below.

Creating a spatial weights list

> polrook <- nb2listw(polgal)
> summary(polrook)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 82
Number of nonzero links: 402
Percentage nonzero weights: 5.978584
Average number of links: 4.902439
Link number distribution:

2 3 4 5 6 7
1 13 16 23 21 8
1 least connected region:
28045 with 2 links
8 most connected regions:
28145 28071 28135 28043 28155 28007 28163 28085 with 7 links

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 82 6724 82 35.14864 332.3231
> polrook$weights
[[1]]
[1] 0.3333333 0.3333333 0.3333333

[[2]]
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[1] 0.3333333 0.3333333 0.3333333

[[3]]
[1] 0.25 0.25 0.25 0.25
...

3.3 Moran’s I

Moran’s I test statistic for spatial autocorrelation is implemented in spdep.
There are two separate functions, moran.test, where inference is based on
a normal or randomization assumption, and moran.mc, for a permutation-
based test. Both take a variable name or numeric vector and a spatial
weights list object (listw), in that order, as mandatory parameters. The
permutation test also requires the number of permutations as a third manda-
tory parameter. Both functions also have several options, discussed in more
detail below.

3.3.1 Normal and Randomization Inference

The different parameters and options for moran.test are revealed by a call
to help(moran.test):

moran.test(x, listw, randomisation=TRUE, zero.policy=FALSE,
alternative="greater", rank = FALSE,
na.action=na.fail, spChk=NULL)

Arguments:

x: a numeric vector the same length as the neighbours list in
listw

listw: a ’listw’ object created for example by ’nb2listw’
randomisation: variance of I calculated under the assumption of

randomisation, if FALSE normality
zero.policy: if TRUE assign zero to the lagged value of zones

without neighbours, if FALSE assign NA
alternative: a character string specifying the alternative

hypothesis, must be one of greater (default), less
or two.sided.

rank: logical value - default FALSE for continuous variables,
if TRUE, uses the adaptation of Moran’s I for ranks
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suggested by Cliff and Ord (1981, p. 46)
na.action: a function (default na.fail), can also be na.omit or

na.exclude - in these cases the weights list will
be subsetted to remove NAs in the data. It may be
necessary to set zero.policy to TRUE
because this subsetting may create no-neighbour
observations.
Note that only weights lists created without using
the glist argument to nb2listw may be subsetted.
If na.pass is used, zero is substituted for NA
values in calculating the spatial lag

spChk: should the data vector names be checked against the
spatial objects for identity integrity, TRUE, or FALSE,
default NULL to use ’get.spChkOption()’

Of the optional parameters, two are very important. The randomisation
option (watch the spelling!) is set to TRUE by default, which implies that in
order to get inference based on a normal approximation, it must be explicitly
set to FALSE. Similarly, the default is a one-sided test, so that in order to
obtain the results for the (more commonly used) two-sided test, the option
alternative must be set explicitly to "two.sided". Note also that the
zero.policy option is set to FALSE by default, which means that islands
result in a missing value code (NA). Setting this option to TRUE will set the
spatial lag for islands to the customary zero value.

To illustrate this, use the variable CRIME and the weights list colqueen
with the normal approximation in a two-sided test:2

> moran.test(CRIME,colqueen,randomisation=FALSE,
+ alternative="two.sided")

Moran’s I test under normality

data: CRIME
weights: colqueen

Moran I statistic standard deviate = 5.3818, p-value = 7.374e-08
alternative hypothesis: two.sided
sample estimates:

2Make sure you have the columbus data set attached, so that the variables can be
referred to by name.
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Moran I statistic Expectation Variance
0.485770914 -0.020833333 0.008860962

Note how, unlike previous practice, the “object” created by moran.test was
not assigned to a specific variable. If you simply want to get the results,
this is not necessary. By entering the test this way, you indirectly invoke the
print function for the object. If you want to access the individual results
of the test for further processing, you should assign the moran.test to an
object and then print that object. For example, using INC:

> mornorINC <- moran.test(INC,colqueen,randomisation=FALSE,
+ alternative="two.sided")
> print(mornorINC)

Moran’s I test under normality

data: INC
weights: colqueen

Moran I statistic standard deviate = 4.6495, p-value = 3.327e-06
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.416837942 -0.020833333 0.008860962

Note how the expectation and variance of the Moran’s I test statistic is the
same for both CRIME and INC. In fact, under the normal approximation,
these moments only depend on the spatial weights, and not on the variable
under consideration.

The mornorINC object belongs to the class htest, which is a generic
class in R designed to hold the results of test statistics. Technically, it is a
list and all its items can be accessed individually (provided you know what
they are called; check the help). For example,

> class(mornorINC)
[1] "htest"
> mornorINC$statistic
Moran I statistic standard deviate

4.649514

shows the information stored in the statistic element of the list.
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When the null hypothesis considered is based on the randomization dis-
tribution, the randomisation option does not need to be set. For example,
again using CRIME:

> moran.test(CRIME,colqueen,alternative="two.sided")

Moran’s I test under randomisation

data: CRIME
weights: colqueen

Moran I statistic standard deviate = 5.3427, p-value = 9.157e-08
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.485770914 -0.020833333 0.008991121

Note how the value of the statistic and its expectation do not change relative
to the normal case, only the variance is different (and thus the z-value and
associated p-value).

Finally, leaving all the defaults as they are:

> moran.test(CRIME,colqueen)

Moran’s I test under randomisation

data: CRIME
weights: colqueen

Moran I statistic standard deviate = 5.3427, p-value = 4.578e-08
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.485770914 -0.020833333 0.008991121

where the only thing different is the p-value (half the p-value of the two-sided
test).

3.3.2 Permutation Inference

A Moran’s I test statistic with inference based on random permutation is
contained in the function moran.mc. As in moran.test, it takes the variable
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name (or vector) and the weights list file (listw object) as the first two
mandatory arguments. It also needs the number of permutations as the
third argument (nsim). Since the rank of the observed statistic is computed
relative to the reference distribution of statistics for the permuted data sets,
it is good practice to set this number to something ending on 9 (such as 99
or 999). This will yield nicely rounded pseudo p-values (like 0.01 or 0.001).
The other options are identical to those for the moran.test function.

For example, using the CRIME variable with the colqueen weights, setting
the number of permutations to 99 and leaving everything else to the default
(e.g., a one-sided test):

> morpermCRIME <- moran.mc(CRIME,colqueen,99)
> morpermCRIME

Monte-Carlo simulation of Moran’s I

data: CRIME
weights: colqueen
number of simulations + 1: 100

statistic = 0.4858, observed rank = 100, p-value = 0.01
alternative hypothesis: greater

Note how the number of simulations + 1 is a round 100. None of the
permuted data sets yielded a Moran’s I greater than the observed value of
0.4858, hence a pseudo p-value of 0.01.3

In this example, the results of the procedure were assigned to an object
of class htest (morpermCRIME), which must be printed to reveal its contents.
One item in the list morpermCRIME is a vector with the computed statistics
for each of the permuted data set. This is contained in the item $res, as in:

> morpermCRIME$res
[1] -0.1211582450 0.0250296894 ... -0.0192339594 -0.1944962763
[6] 0.0397742260 -0.0554032219 ... 0.1625140071 -0.1785841236

...
[91] 0.0196008271 -0.1764712321 ... -0.0832054684 0.0782020854
[96] 0.0910332773 -0.1760530540 ... -0.0806383188 0.4857709137

Note that the “observed” value of Moran’s I (0.48577) is included in this list
as the last element. By default, the contents of this vector will slightly differ

3This is obtained as the ratio of the number of values greater or equal to observed statis-
tic + 1 over the number of simulations + 1. In the example, this is (0+1)/(99+1)=0.01.
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from run to run, since they are based on random permutations. The default
random number seed value is determined from the current time and so no
random permuation will be identical. To control the seed, use the R func-
tion set.seed(seed, kind = NULL) right before invoking the moran.mc
command, and set the same value each time. For example, try this using
set.seed(123456):

> set.seed(123456)
> morpermCRIME <- moran.mc(CRIME,colqueen,99)
> morpermCRIME$res

[1] -6.607790e-02 1.398150e-02 7.363572e-02 ...
...
[100] 4.857709e-01

Unless you want to replicate results exactly, it is typically better to let the
randomness of the clock set the seed.

3.3.3 Plotting the Reference Distribution

The full vector of Moran statistics for the permuted data sets lends itself well
to a histogram or density plot. R has very sophisticated plotting functions,
and this example will only scratch the surface. Consult the help files for
further details and specific options.

In order to construct a density plot, we first need to create a “density”
object. To make sure that this is the reference distribution plotted for the
randomly permuted data sets only, we must remove the last element from
morpermCRIME$res:

> morp <- morpermCRIME$res[1:length(morpermCRIME$res)-1]

Next, we must pass the new list (morp) to the function density. This
function has many options, and in this example they are all kept to their
default settings (check out help(density) for further details), so that only
the vector with statistics is specified. The result is stored in the object zz:

> zz <- density(morp)

Next, we will plot three graphs on top of each other: a (continuous)
density function (based on zz), a histogram for the reference distribution,
and a line indicating the observed Moran’s I. The latter is contained in the
statistic attribute of the moran.mc object, morpermCRIME$statistic.
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In the code that follows, the density plot is drawn first, along with the
titles (main on top and xlab under the x-axis).4 Also, to make the plot more
distinct, a double line width is set (lwd=2) and the plot is in red (col=2).
Finally, to make sure that the default settings for the plot do not make it
too small, we explicitly set the horizontal (xlim) and vertical (ylim) width
(typically, this takes some trial and error to get it right):

> plot.density(zz,main="Moran’s I Permutation Test",
+ xlab="Reference Distribution",xlim=c(-0.3,0.7),
+ ylim=c(0,6),lwd=2,col=2)

Next, you add the histogram (hist) and a vertical line (abline). The
histogram is drawn in regular thickness black lines, while the vertical line is
double thickness (lwd=2) and drawn in blue (col=4):

> hist(morp,freq=F,add=T)
> abline(v=morpermCRIME$statistic,lwd=2,col=4)

The result is as in Figure 3.1 on p. 24.
Note that the example as described will plot the figure on your screen.

In order to create hard copy output, you need to specify an output device.
R supports several devices, but by far the most commonly used are the
postscript and pdf devices. You must first open the device explicitly. For
example,

>postscript(file="filename")

for a postscript file, or

>pdf(file="filename")

for a pdf file. All plotting commands that follow will be written to that
device, until you close it with a dev.off() command. For example,

> postscript(file="moran.pdf") # file name for pdf file
... # plotting commands
> dev.off() # close postscript device

4Several, but not all the plotting functions in R support an add=T argument, which
adds a graph to an existing plot. Since the current version of plot.density does not
support this argument, while the other two plots do, it has to be drawn first.
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Figure 3.1: Moran’s I Permutation Test Plot.

3.3.4 Practice

Use the police data set and the polrook weights to test for spatial auto-
correlation in the CRIME variable for the Mississippi counties. Use both the
normal and randomization assumptions, as well as a permutation approach.
Try making a graph of the distribution of the statistic in the simulated data
sets, as in Figure 3.1.

Make sure to detach(columbus) and attach(police) before carrying
out the tests so that you use the correct variable. Afterwards, do the reverse
to get back to the columbus data for the remainder of the illustrations.
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The results for the statistics are given below.

Moran’s I, Normal Assumption

> moran.test(CRIME,polrook,randomisation=FALSE,
+ alternative="two.sided")

Moran’s I test under normality

data: CRIME
weights: polrook

Moran I statistic standard deviate = 1.9108, p-value = 0.05604
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.121668149 -0.012345679 0.004919118

Moran’s I, Randomization Assumption

> moran.test(CRIME,polrook,alternative="two.sided")

Moran’s I test under randomisation

data: CRIME
weights: polrook

Moran I statistic standard deviate = 2.4522, p-value = 0.01420
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.121668149 -0.012345679 0.002986579

Moran’s I, Permutation Approach

> morMissCRIME <- moran.mc(CRIME,polrook,999)
> print(morMissCRIME)

Monte-Carlo simulation of Moran’s I

data: CRIME
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weights: polrook
number of simulations + 1: 1000

statistic = 0.1217, observed rank = 986, p-value = 0.014
alternative hypothesis: greater

3.4 Constructing a Spatially Lagged Variable

Spatially lagged variables are important elements of many spatial regression
specifications. In spdep, they are constructed by means of the lag.listw
function. This function takes as arguments a spatial weights object of class
listw and a conforming matrix (i.e., a matrix with the same number of rows
as the dimension of the spatial weights).5 Note that the documentation for
lag.listw only refers to a “numeric vector,” but this is incomplete. A
look at the source code (type lag.listw without the usual parentheses)
reveals that it works equally well for a matrix, i.e., for several variables
in one function call. The third (optional) argument to lag.listw is the
zero.policy, which we can ignore for the columbus and police sample
data sets.

3.4.1 Example

First, we will combine the three variables CRIME, INC and HOVAL into a
matrix.6 This is accomplished by means of the cbind command and will
be an often used procedure when you program your own routines based on
matrix algebra. For example, you create the matrix xx as:

> xx <- cbind(CRIME,INC,HOVAL)

and check the contents with

> xx
CRIME INC HOVAL

[1,] 15.725980 19.531 80.467
[2,] 18.801754 21.232 44.567
[3,] 30.626781 15.956 26.350
...

5The order of these arguments is the reverse of that in the Moran test statistics. Here,
the weights object must come first, and the vector or matrix second. This order must be
respected.

6Make sure you detached the police data frame and attached columbus.
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Now, you can construct a spatially lagged version of this matrix, using
the colqueen weights:

> wxx <- lag.listw(colqueen,xx)

and check the contents

> wxx
[,1] [,2] [,3]

[1,] 24.71427 18.594000 35.45850
[2,] 26.24684 13.321333 46.67233
[3,] 29.41175 14.123000 45.36475
...

Since this is a fairly small data set, we can easily check if the spatial lag
terms are what they should be. Extract the neighbor IDs and spatial weights
from listw by referring to the proper list elements (a listw object is a list,
i.e., a combination of different elements). You see the names of the elements
as the result of an attributes command (this lists the “attributes” of an
object). For example,

> attributes(colqueen)
$names
[1] "style" "neighbours" "weights"

$class
[1] "listw" "nb"

$region.id
[1] 1005 1001 1006 1002 ... 1037 1039 1040 1009
...
[46] 1048 1015 1027 1026

$call
nb2listw(neighbours = col.gal.nb)

This shows that the neighbor IDs are in colqueen$neighbours (spelling!)
and the corresponding weights in colqueen$weights. Specifically, for the
first observation:

> colqueen$neighbours[1]
[[1]]
[1] 2 3
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and

> colqueen$weights[1]
[[1]]
[1] 0.5 0.5

A simple calculation yields the spatial lags for the first observation “by
hand”:

> (xx[2,] + xx[3,])/2.0
CRIME INC HOVAL

24.71427 18.59400 35.45850

which are the same values as in the first row of wxx.
Compare the descriptive characteristics of the original variables to their

spatial lags:

> summary(xx)
CRIME INC HOVAL

Min. : 0.1783 Min. : 4.477 Min. :17.90
1st Qu.:20.0485 1st Qu.: 9.963 1st Qu.:25.70
Median :34.0008 Median :13.380 Median :33.50
Mean :35.1288 Mean :14.375 Mean :38.44
3rd Qu.:48.5855 3rd Qu.:18.324 3rd Qu.:43.30
Max. :68.8920 Max. :31.070 Max. :96.40
> summary(wxx)

X1 X2 X3
Min. :13.85 Min. : 8.539 Min. :23.41
1st Qu.:24.71 1st Qu.:10.957 1st Qu.:30.82
Median :35.90 Median :14.303 Median :36.38
Mean :34.88 Mean :14.742 Mean :38.73
3rd Qu.:45.39 3rd Qu.:17.161 3rd Qu.:45.36
Max. :54.91 Max. :26.066 Max. :75.13

Note how the spatial lag operation compresses the distribution of the vari-
able. The measures of “spread” are substantially smaller than for the origi-
nals.

3.4.2 Practice

Compute the spatial lags for the CRIME, POLICE and INC variables in the
police data set, using the polrook spatial weights. Compare the descrip-
tive statistics of the original variables to their spatial lags. Experiment
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with other spatial weights and/or try some statistical plots to visualize the
difference between the distributions.

The basic results are given below.

Spatial Lags

> policex <- cbind(CRIME,POLICE,INC)
> wpolicex <- lag.listw(polrook,policex)
> summary(policex)

CRIME POLICE INC
Min. : 5.0 Min. : 49.0 Min. : 4836
1st Qu.: 76.5 1st Qu.: 291.5 1st Qu.: 6520
Median : 141.5 Median : 432.5 Median : 7008
Mean : 194.5 Mean : 927.8 Mean : 7198
3rd Qu.: 298.0 3rd Qu.: 955.8 3rd Qu.: 7612
Max. :1739.0 Max. :10971.0 Max. :10506
> summary(wpolicex)

X1 X2 X3
Min. : 38.5 Min. : 225.0 Min. :6109
1st Qu.:125.4 1st Qu.: 469.0 1st Qu.:6847
Median :163.0 Median : 690.5 Median :7092
Mean :191.8 Mean : 931.5 Mean :7191
3rd Qu.:224.6 3rd Qu.: 991.1 3rd Qu.:7449
Max. :732.7 Max. :3434.0 Max. :8608

3.5 Moran Scatter Plot

The Moran scatter plot is also included in the spdep functionality. It is
implemented in the function moran.plot. This takes as arguments a vari-
able name, followed by a spatial weights objects of class listw. Optional
parameters are the zero.policy as well as several ways to fine tune the
labeling of high influence points, the x and y-axes, and the various graphical
parameters (passed as in par(..)). The function moran.plot also creates
a so-called “influence” object from the influence.measures passed back
from the regression model that is used to estimate the slope (Moran’s I).
Setting the option quiet=TRUE suppresses the influence measures (the de-
fault is quiet=FALSE).
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Figure 3.2: Moran Scatter Plot for CRIME, using colqueen.

3.5.1 Example

Use the CRIME variable from the columbus data frame and the spatial weights
colqueen to invoke the Moran scatterplot, leaving all other settings to their
default:

> moran.plot(CRIME,colqueen)
Potentially influential observations of

lm(formula = wx ~ x) :

dfb.1_ dfb.x dffit cov.r cook.d hat

30



1004 1.55_* -1.40_* 1.55_* 0.59_* 0.86_* 0.11
1034 0.15 -0.21 -0.23 1.14_* 0.03 0.11

Note the list of influence characteristics and the IDs of the influential obser-
vations. The plot is as in Figure 3.2 on p. 30.

The Moran scatterplot produced by spdep differs somewhat from the one
implemented in GeoDa. Most importantly, spdep uses the original variables,
whereas GeoDa constructs the plot for standardized variates. Also, it is not
clear how Moran’s I can be extracted from the plot without an additional
computation. The object returned by the function is a matrix with the
observations as rows and the six influence measures as columns.

3.5.2 Customizing the Moran Scatter Plot

We will program a simple function that constructs a Moran scatter plot
using standardized variables and shows the value of Moran’s I on the plot.
We will use the spdep function lag.listw to build the spatial lags and the
generic R regression function lm to get the coefficients. First we test the
various commands by trying them step by step, with hard-coded variables,
then we generalize and turn them into a function.

First set the generic variable x to the variable of interest (CRIME), and
convert it to a standardized variate, with a simple check to make sure we
did it right:

> x <- CRIME
> zx <- (x - mean(x))/sd(x)
> mean(zx)
[1] -1.948555e-16
> var(zx)
[1] 1

Next, create the spatial lag for the standardized variable, after turning the
weights into a generic variable:

> wfile <- colqueen
> wzx <- lag.listw(wfile,zx)

Now, compute the intercept and slope (Moran’s I), using lm:

> morlm <- lm(wzx ~ zx)
> aa <- morlm$coefficients[1]
> mori <- morlm$coefficients[2]
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Figure 3.3: Moran Scatter Plot for standardized CRIME, using colqueen.

> aa
(Intercept)
-0.01496451
> mori

zx
0.4857709

Finally, we set up the plot as a simple scatterplot (plot(x,y)), add the
regression line and the two axes (using abline), label the axes (using xlab
and ylab), and put a title containing the value of Moran’s I at the top
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(using title, the paste command to put together text fragments, and a
combination of format and round to make sure the Moran’s I doesn’t have
too many decimal digits):

> par(pty="s") # make sure it’s square
> plot(zx,wzx,xlab="CRIME",ylab="Spatial Lag of CRIME")
> abline(aa,mori)
> abline(h=0,lty=2)
> abline(v=0,lty=2)
> title(paste("Moran Scatterplot I= ",format(round(mori,4))))

The result looks like Figure 3.3 on p. 32.
To combine these commands into a function, create a file in any text

editor and name it moran.plot2.R. Enter the commands listed below and
save the file as a text file in your working directory.

# moran.plot2
# function for Moran scatterplot using standardized variates
# specify variable = x
# specify spatial weights (listw object) = wfile
# all other options are hard coded (so far)
# example: moran.plot2(CRIME,colqueen)
#

moran.plot2 <- function(x,wfile)
{

xname <- deparse(substitute(x)) # get name of variable
zx <- (x - mean(x))/sd(x)
wzx <- lag.listw(wfile,zx)
morlm <- lm(wzx ~ zx)
aa <- morlm$coefficients[1]
mori <- morlm$coefficients[2]
par(pty="s")
plot(zx,wzx,xlab=xname,ylab=paste("Spatial Lag of ",xname))
abline(aa,mori,col=2)
abline(h=0,lty=2,col=4)
abline(v=0,lty=2,col=4)
title(paste("Moran Scatterplot I= ",format(round(mori,4))))

}

The only things different from before are the use of the functions deparse
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and substitute to extract the variable name for use in the plot labels xlab
and ylab. Source the function as

> source("moran.plot2.R")

and invoke it as moran.plot2. For example, passing CRIME and colqueen
as the parameters:

> moran.plot2(CRIME,colqueen)

will yield the same plot as in Figure 3.3 (except that the regression line is
in red and the axes drawn in blue, see Figure 3.4 on p. 35).

3.5.3 Practice

Try out the new function using the police data frame (make sure to first
detach(columbus) then attach(police)), and construct a Moran scatter-
plot for the variable INC using polrook as the weight file. Compare this
plot to the standard spdep moran.plot. Try some other variables and/or
spatial weights. Also try to get your plot written out to a postscript or pdf
file (make sure to include dev.off() at the end to switch back to screen
output).

If you feel adventurous, check out the source code of moran.plot and add
the various safety checks and the diagnostics of high leverage to moran.plot2.

Moran Scatter Plot

> pdf(file="morscatf.pdf")
> moran.plot2(INC,polrook)
> dev.off()
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Figure 3.4: Moran Scatter Plot for standardized INC, using polrook.
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Exercise 4

Monte Carlo Simulation (1)
Assessing the Properties of a
Test Statistic

4.1 Objectives

The purpose of this exercise is to illustrate how to set up a simple Monte
Carlo simulation experiment to assess some properties of a test statistic.
Specifically, the end goal is to describe the distribution and compare the
nominal and empirical rejection frequencies for Moran’s I under the null
hypothesis. In the process, we will look at how to generate random variables
and carry out basic matrix algebra in R. We will also use spdep to create
spatial weights for regular grids and convert spatial weights to actual matrix
objects.

As before, make sure spdep is loaded before starting the exercises. Since
all the data will be generated, there is no need to specify a particular data
frame.

4.2 Generating Random Variables

R has extensive functionality to generate random variables for a wide range
of distributions and to compute probabilities for those distributions.1

Each distribution function has an R name, such as norm for the normal
and unif for the uniform. The different random variable related functions

1See Chapter 8 on Probability Distributions in Venables et al. (2004) for further details.
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are indicated by a single letter prefix to the distribution name. This includes
d for the density, p for the cumulative density function, q for the quantile
function, and r for simulation of random variables.2 The arguments to these
functions are, respectively, the value of a random variable x for dxxx and
pxxx, a probability for qxxx, and the sample size for rxxx.

4.2.1 Example

To generate a vector of 25 standard normal variates, use rnorm with only
the sample size as parameter, as in:

> x <- rnorm(25)

Check the mean and standard deviation:3

> mean(x)
[1] -0.199015
> sd(x)
[1] 0.9869352

Note how for a sample this small, the mean is fairly far from its theoreti-
cal expectation. To get a much closer fit and eliminate some of the extra
variability induced by the random number generator, you need to generate
much larger sets. For example:

> x <- rnorm(100000)
> mean(x)
[1] -0.005083976
> sd(x)
[1] 0.996822
> x <- rnorm(1000000)
> mean(x)
[1] -0.001698689
> sd(x)
[1] 1.000263

To generate a vector of normal random variates with a given mean and
standard deviation, you need to pass these as arguments in addition to the

2The CDF and quantile functions have the special arguments lower.tail and log that
are very useful in practice. For example, to compute the upper tail of a distribution as
when the p-value of a statistic is required, or, 1 - CDF(x), set lower.tail = FALSE.

3Note that your results will vary, since the seed of the random number generator was
not fixed using set.seed.
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sample size. Note that you pass the standard deviation, not the variance.
For example:

> x <- rnorm(1000,5,20)
> mean(x)
[1] 5.241835
> sd(x)
[1] 19.59694

You can now compare a given percentile in the generated distribution to
its theoretical value. For example, in the 1000 generated values above the
95th percentile will be in row 950 of the sorted vector x:

> z <- sort(x)
> z[950]
[1] 36.46587

The theoretical value is found with the qnorm function, passing 0.95 (the
probability) as the argument, in addition to the mean and standard devia-
tion:

> qz <- qnorm(0.95,5,20)
> qz
[1] 37.89707

A plot of the sorted z values against qz values for the same percentile would
yield a q-q plot. Conversely, finding the cumulative probability for z[950]:

> pz <- pnorm(z[950],5,20)
> pz
[1] 0.9421746

4.2.2 Practice

Experiment with some of the other distributions, such as the uniform, using
runif(n,min,max), or the Poisson, using rpois(n,lambda). Use the tech-
niques from Exercise 3 to draw a histogram or density plot for the generated
variates and summarize the characteristics of the distribution (mean, sd, and
summary).
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Figure 4.1: Histogram for Randomly Generated Poisson Variates.

Histogram for Poisson Variates

> z2 <- rpois(50,2)
> summary(z2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 1.00 2.00 2.14 3.00 6.00

> mean(z2)
[1] 2.14
> var(z2)
[1] 2.041224
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> pdf(file="poisson.pdf")
> hist(z2)
> dev.off()

4.3 Basic Matrix Algebra Operations

Operations on matrices and vectors are element by element in R. So, if x
is a vector (say n by 1) and A is a n by n matrix, then A * x will multiply
each row element in A with the matching row element in x and yield another
n by n matrix, not a n by 1 vector. To illustrate, use the c operator (for
concatenate) to create a 5 by 1 vector x (by default this is a column vector),
and the matrix function with row and column parameters to create a 5 by
5 matrix (of sequence numbers):

> x <- c(1:5)
> x
[1] 1 2 3 4 5
> A <- matrix(1:25,5,5)
> A

[,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

Note how the default ordering of a matrix is in so-called “column major
order” (down each column first). Alternatively, a vector can be passed to
the array function with a dim attribute for the same effect (this is useful
for reshaping matrices as well):

> z <- c(1:25)
> B <- array(z,dim=c(5,5))
> B

[,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

40



Now, multiply A by x:

> zz <- A * x
> zz

[,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 4 14 24 34 44
[3,] 9 24 39 54 69
[4,] 16 36 56 76 96
[5,] 25 50 75 100 125

In order to get true matrix multiplication, following to the rules of matrix
algebra, a different operator must be used, symbolized as %*%:

> zz1 <- A %*% x
> zz1

[,1]
[1,] 215
[2,] 230
[3,] 245
[4,] 260
[5,] 275

A few other important basic matrix operations are:

• nrow(matrix) for the number of rows

• ncol(matrix) for the number of columns

• t(matrix) to construct the transpose of a matrix, e.g., X ′

• diag(matrix) to extract the diagonal elements from a matrix

• diag(vector) to create a diagonal matrix with vector as diagonal

• crossprod(matrix1,matrix2) to compute the crossproduct (e.g., X ′y)
between two matrices efficiently

• %o% for the outer product of two vectors, e.g., xx′

• outer(vector1,vector2,function) for any function applied to each
pair xi and yj
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4.3.1 Example

Start with a vector of 30 standard normal variates and convert it to a 10 by 3
matrix. Note how you can force “row major order” by setting the argument
byrow=TRUE:

> x1 <- rnorm(30)
> x1
[1] 1.86263657 -0.14248903 -1.26807899 ... -0.30481949
[7] 1.05654040 0.46209724 -0.75313876 ... -1.95010825
[13] -0.33947593 0.55823272 -1.42072261 ... 0.37998187
[19] -0.75149464 0.47130272 0.76668664 ... 0.64171921
[25] -0.99857864 -1.53179763 1.94797343 ... -0.32623853
> XX <- matrix(x1,10,3)
> XX

[,1] [,2] [,3]
[1,] 1.8626366 1.02988875 0.7666866
[2,] -0.1424890 -1.95010825 0.3450489
[3,] -1.2680790 -0.33947593 0.6046427
[4,] 0.2091366 0.55823272 0.6417192
[5,] 0.4177341 -1.42072261 -0.9985786
[6,] -0.3048195 0.06214715 -1.5317976
[7,] 1.0565404 -0.31582345 1.9479734
[8,] 0.4620972 0.37998187 -0.9578326
[9,] -0.7531388 -0.75149464 -1.5308449
[10,] 0.7728531 0.47130272 -0.3262385
> XX <- matrix(x1,10,3,byrow=TRUE)
> XX

[,1] [,2] [,3]
[1,] 1.86263657 -0.1424890 -1.2680790
[2,] 0.20913657 0.4177341 -0.3048195
[3,] 1.05654040 0.4620972 -0.7531388
[4,] 0.77285309 1.0298887 -1.9501082
[5,] -0.33947593 0.5582327 -1.4207226
[6,] 0.06214715 -0.3158235 0.3799819
[7,] -0.75149464 0.4713027 0.7666866
[8,] 0.34504894 0.6046427 0.6417192
[9,] -0.99857864 -1.5317976 1.9479734
[10,] -0.95783257 -1.5308449 -0.3262385
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Check the number of rows and columns and construct the transpose of ma-
trix XX:

> rXX <- nrow(XX)
> rXX
[1] 10
> cXX <- ncol(XX)
> cXX
[1] 3
> tXX <- t(XX)
> tXX

[,1] [,2] [,3] ... [,6]
[1,] 1.8626366 0.2091366 1.0565404 ... 0.06214715
[2,] -0.1424890 0.4177341 0.4620972 ... -0.31582345
[3,] -1.2680790 -0.3048195 -0.7531388 ... 0.37998187

[,7] [,8] [,9] [,10]
[1,] -0.7514946 0.3450489 -0.9985786 -0.9578326
[2,] 0.4713027 0.6046427 -1.5317976 -1.5308449
[3,] 0.7666866 0.6417192 1.9479734 -0.3262385

Compute the cross product of the two matrices (e.g., X ′X), extract the
diagonal and divide by the number of rows. If these were in deviations from
the mean, the result would be the estimated variance in each column of the
original matrix. Note how the division / is an element by element operation:

> XtX <- crossprod(XX)
> XtX

[,1] [,2] [,3]
[1,] 7.944244 3.747365 -6.210131
[2,] 3.747365 7.157987 -4.951293
[3,] -6.210131 -4.951293 13.134562
> v1 <- diag(XtX)
> v1
[1] 7.944244 7.157987 13.134562
> var1 <- v1 / nrow(XX)
> var1
[1] 0.7944244 0.7157987 1.3134562

4.3.2 Practice

Make sure you become familiar with the difference between element by ele-
ment operations and true matrix algebra in R. Practice by creating random
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vectors and matrices, multiply them, compute cross-products and extract
diagonals. These will be important tools in constructing the test statistics
needed in the simulation experiment.

4.4 Creating Spatial Weights for a Grid Layout

In many simulation settings, one controls for the spatial layout of the data
by generating a sample for a regular square grid. The weights matrix for
such a layout has a simple structure and does not require the checking of
boundaries or computation of distances that is needed for irregular layouts.
The function cell2nb in spdep creates a neighbor object for any rectangular
grid, using either rook or queen as the criterion. Alternatively, a so-called
torus correction may be used to avoid edge effects.4

The cell2nb function takes as required parameters the number of rows
and the number of columns in the grid. In addition, the type of contiguity
can be specified (default is type="rook", the other option is queen), as well
as whether or not a torus correction is needed (set torus=TRUE, the default
is FALSE).

4.4.1 Example

To create a rook type neighbor object for a 4 by 4 square grid layout, and
to check its properties, use:

> rook4x4 <- cell2nb(4,4)
> summary(rook4x4)
Neighbour list object:
Number of regions: 16
Number of nonzero links: 48
Percentage nonzero weights: 18.75
Average number of links: 3
Link number distribution:

2 3 4
4 8 4
4 least connected regions:
1:1 4:1 1:4 4:4 with 2 links

4The torus correction connects the grid cells in the right-most cell to those in the left-
most cell, and those in the top row to those in the bottom row, thus ensuring that each
cell has four neighbors (for rook).
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4 most connected regions:
2:2 3:2 2:3 3:3 with 4 links

Compare to the properties with a torus correction:

> rook4x4t <- cell2nb(4,4,torus=TRUE)
> summary(rook4x4t)
Neighbour list object:
Number of regions: 16
Number of nonzero links: 64
Percentage nonzero weights: 25
Average number of links: 4
Link number distribution:

4
16
16 least connected regions:
1:1 2:1 3:1 4:1 1:2 2:2 3:2 4:2 ... 1:4 2:4 3:4 4:4 with 4 links
16 most connected regions:
1:1 2:1 3:1 4:1 1:2 2:2 3:2 4:2 ... 1:4 2:4 3:4 4:4 with 4 links

4.4.2 Practice

Create neighbor objects for a 5 by 10 rectangular grid using both rook and
queen as contiguity criterion, and compare their properties. Experiment
with other layouts and/or a torus correction.

Creating Rectangular Grid Neighbor Objects

> rook5x10 <- cell2nb(5,10)
> summary(rook5x10)
Neighbour list object:
Number of regions: 50
Number of nonzero links: 170
Percentage nonzero weights: 6.8
Average number of links: 3.4
Link number distribution:

2 3 4
4 22 24
4 least connected regions:
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1:1 5:1 1:10 5:10 with 2 links
24 most connected regions:
2:2 3:2 4:2 ... 4:9 with 4 links
> queen5x10 <- cell2nb(5,10,type="queen")
> summary(queen5x10)
Neighbour list object:
Number of regions: 50
Number of nonzero links: 314
Percentage nonzero weights: 12.56
Average number of links: 6.28
Link number distribution:

3 5 8
4 22 24
4 least connected regions:
1:1 5:1 1:10 5:10 with 3 links
24 most connected regions:
2:2 3:2 4:2 ... 4:9 with 8 links

4.5 Converting Spatial Weights to a Matrix

The neighbor list nb objects and the spatial weights listw objects both
store the contiguity information in an efficient (sparse) form. Sometime, it
is necessary to use the full matrix representation of the weights, for example,
to use them in matrix computations.5

The function nb2mat converts the contiguity information in an nb object
to a full matrix. A call to the help function shows the necessary arguments
and default options:

> help(nb2mat)
nb2mat package:spdep R Documentation

Spatial weights matrices for neighbours lists

Description:

The function generates a weights matrix for a neighbours list with

5Typically, however, it is very inefficient to operate on the full matrix, and sparse
operations should be pursued as much as possible.
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spatial weights for the chosen coding scheme.

Usage:

nb2mat(neighbours, glist=NULL, style="W", zero.policy=FALSE)
listw2mat(listw)

Arguments:

neighbours: an object of class ’nb’

glist: list of general weights corresponding to neighbours

style: ’style’ can take values W, B, C, and S

zero.policy: If FALSE stop with error for any empty neighbour sets, if
TRUE permit the weights list to be formed with zero-length
weights vectors

listw: a ’listw’ object from for example ’nb2listw’

4.5.1 Example

Convert the previously created rook neighbor list for the 4 by 4 regular grid
to a full matrix, using row-standardized weights, as:

> wrks <- nb2mat(rook4x4)
> wrks

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000
[2,] 0.3333333 0.0000000 0.3333333 0.0000000 0.0000000 0.3333333 0.0000000
[3,] 0.0000000 0.3333333 0.0000000 0.3333333 0.0000000 0.0000000 0.3333333
[4,] 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 0.0000000
[5,] 0.3333333 0.0000000 0.0000000 0.0000000 0.0000000 0.3333333 0.0000000
[6,] 0.0000000 0.2500000 0.0000000 0.0000000 0.2500000 0.0000000 0.2500000
[7,] 0.0000000 0.0000000 0.2500000 0.0000000 0.0000000 0.2500000 0.0000000
[8,] 0.0000000 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000 0.3333333
[9,] 0.0000000 0.0000000 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000
[10,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.2500000 0.0000000
[11,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.2500000
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[12,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[13,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[14,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[15,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[16,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

[,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[2,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[3,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[4,] 0.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[5,] 0.0000000 0.3333333 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[6,] 0.0000000 0.0000000 0.2500000 0.0000000 0.0000000 0.0000000 0.0000000
[7,] 0.2500000 0.0000000 0.0000000 0.2500000 0.0000000 0.0000000 0.0000000
[8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000
[9,] 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000 0.3333333 0.0000000
[10,] 0.0000000 0.2500000 0.0000000 0.2500000 0.0000000 0.0000000 0.2500000
[11,] 0.0000000 0.0000000 0.2500000 0.0000000 0.2500000 0.0000000 0.0000000
[12,] 0.3333333 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000 0.0000000
[13,] 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000
[14,] 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000 0.3333333 0.0000000
[15,] 0.0000000 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000 0.3333333
[16,] 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 0.0000000

[,15] [,16]
[1,] 0.0000000 0.0000000
[2,] 0.0000000 0.0000000
[3,] 0.0000000 0.0000000
[4,] 0.0000000 0.0000000
[5,] 0.0000000 0.0000000
[6,] 0.0000000 0.0000000
[7,] 0.0000000 0.0000000
[8,] 0.0000000 0.0000000
[9,] 0.0000000 0.0000000
[10,] 0.0000000 0.0000000
[11,] 0.2500000 0.0000000
[12,] 0.0000000 0.3333333
[13,] 0.0000000 0.0000000
[14,] 0.3333333 0.0000000
[15,] 0.0000000 0.3333333
[16,] 0.5000000 0.0000000
attr(,"call")

48



nb2mat(neighbours = rook4x4)

4.5.2 Practice

Create a matrix from the queen or other neighbor objects you constructed in
4.4.2. Use a matrix multiplication operation to construct a spatially lagged
variable for a conforming random vector. Compare the result to what the
lag.listw function yields (you must make sure to convert the nb object to
a listw using nb2listw).

Creating a Spatial Lag Using Matrix Multiplication

> x <- rnorm(50)
> w50 <- nb2mat(queen5x10)
> w50[1,]
[1] 0.0000000 0.3333333 0.0000000 0.0000000 0.0000000 0.3333333 0.3333333 ...
> wx <- w50 %*% x
> wwx <- lag.listw(nb2listw(queen5x10),x)
> wx[1:4]

1:1 2:1 3:1 4:1
0.0765760 -0.2601768 0.1325916 -0.5860503
> wwx[1:4]
[1] 0.0765760 -0.2601768 0.1325916 -0.5860503

4.6 A Simulation Experiment

An important property of any test statistic is its distribution under the
null, and, more specifically, characteristics such as the mean, variance, and
higher moments. In addition, the size of the test statistic is the probability
of rejecting the null for a given significance level. For a test statistic to be
unbiased, its size should equal the p-value corresponding to the theoretical
critical value (the nominal significance). For example, if 1.96 is chose as
the critical value in a two-sided test for a statistic that follows a standard
normal distribution, 5% of the cases should reject the null hypothesis, even
though it is true.

A simple simulation experiment can demonstrate these properties for
Moran’s I, applied to a generic random variable.6 We will start with consid-
ering uncorrelated standard normal variates, but this can easily be extended
to other distributions.

6The theoretical moments for Moran’s I applied to regression residuals are different.
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4.6.1 Computing Moran’s I Using Matrix Algebra

For an n × n row-standardized weights matrix W with elements wij , the
Moran’s I statistic is:

I = z′Wz/z′z, (4.1)

where z is a n × 1 vector of variables expressed as deviations from the
mean. When the weights are not row-standardized, a scaling factor of n/S0

is applied, where S0 =
∑

i

∑
j wij .

In our simulation experiment, we will not be relying on the built-in
Moran’s I calculations from spdep, but instead compute the statistic directly
using matrix algebra and the spatial lag operation. The first step in this
process is to generate a random vector and convert it to deviations from the
mean:

> y <- rnorm(16)
> yz <- y - mean(y)
> mean(yz)
[1] -4.163336e-17

Next, we build the numerator and denominator of equation (4.1), us-
ing matrix products and the spatial lag operator lag.listw with the rook
weights for the grid:

> yy <- crossprod(yz)
> yy

[,1]
[1,] 13.98298
> wy <- lag.listw(nb2listw(rook4x4),yz)
> ywy <- crossprod(yz,wy)
> ywy

[,1]
[1,] 1.294643

The Moran’s I statistic follows directly, as:

> mi <- ywy / yy
> mi

[,1]
[1,] 0.09258704
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4.6.2 The Theoretical Moments of Moran’s I

Under the normal assumption for the null, the theoretical moments of Moran’s
I only depend on the characteristics of the weights matrix. Specifically,

E[I] =
−1
n− 1

(4.2)

E[I2] =
n2S1 − nS2 + 3S2

0

(n− 1)(n+ 1)S2
0

, (4.3)

where S1 and S2 are sums of weights matrix elements,

S1 = (1/2)
∑

i

∑
j

(wij + wji)2 (4.4)

S2 =
∑

i

(wi∗ + w∗j)2, (4.5)

with wi∗ as the row sums and w∗j as the column sums. Note that with row-
standardized weights, these expressions simplify, since each row sum equals
1, and therefore S0 = n.

The variance of Moran’s I then follows as

V ar[I] = E[I2]− E[I]2, (4.6)

and the statistic is turned into a standardized variate as

Iz =
I − E[I]√
V ar[I]

. (4.7)

Since the mean and variance of the statistic under the null depend
solely on the weights matrix, and not on the actual variables under con-
sideration, they must only be computed once. The required “sums” can
be extracted from a spatial weights object by means of the spdep function
spweights.constants.

Consider the rook4x4 neighbor object for the square grid and extract
the sums by converting the nb object to a listw object (using nb2listw):

> rks <- spweights.constants(nb2listw(rook4x4))
> rks
$n
[1] 16
$n1
[1] 15
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$n2
[1] 14
$n3
[1] 13
$nn
[1] 256
$S0
[1] 16
$S1
[1] 11.05556
$S2
[1] 64.61111

Using these results, we can compute the moments of Moran’s I in this ex-
ample:

> eirk4x4 <- -1 / rks$n1
> eirk4x4
[1] -0.06666667
> ei2rk4x4 <- (rks$n^2 * rks$S1 - rks$n * rks$S2 + 3 * rks$S0^2)/
+ (rks$n1 * (rks$n + 1) * rks$S0^2)
> ei2rk4x4
[1] 0.03928377
> varirk4x4 <- ei2rk4x4 - eirk4x4^2
> varirk4x4
[1] 0.03483932
> sdirk4x4 <- sqrt(varirk4x4)
> sdirk4x4
[1] 0.1866530

4.6.3 Inference

Inference is based on a normal approximation, where the statistic is stan-
dardized and then compared to the standard normal distribution.

We standardize the statistic computed in section 4.6.1 with the moments
computed above:

> iz <- (mi - eirk4x4)/sdirk4x4
> iz

[,1]
[1,] 0.8532076
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and obtain a two-tailed significance using pnorm with the lower.tail =
FALSE option, and multiplying the result by 2.0

> piz <- pnorm(iz,lower.tail=FALSE) * 2
> piz

[,1]
[1,] 0.3935442

To check this, we can use the random vector y in the moran.test with
the rook grid weights (see section 3.3.1 on p. 17):

> moran.test(y,nb2listw(rook4x4),randomisation=FALSE,
+ alternative="two.sided")

Moran’s I test under normality

data: y
weights: nb2listw(rook4x4)

Moran I statistic standard deviate = 0.8532, p-value = 0.3935
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.09258704 -0.06666667 0.03483932

These results are identical to those computed “by hand.”

4.6.4 Setting up the Experiment

The simulation experiment will require the following steps:

• initialize the number of simulations (r), sample size (n) and critical
value (either a p-value, such as 0.05, or its counterpart in the distri-
bution, such as 1.96)

• create a neighbor object for a given lattice layout (see cell2nb in
section 4.4)

• convert the neighbor object to a weights list (nb2listw)

• compute the theoretical moments of Moran’s I (section 4.6.2)

• initialize vectors with results (value of statistic, decision)
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• loop over each random replication

– generate standard normal vector (section 4.2)

– compute Moran’s I (section 4.6.1) and store result in vector

– compute p-value (section 4.6.3) and store decision in vector

• summarize results

– compute mean and variance (standard deviation) of results vector
with Moran’s I

– do tests on normal distribution for results vector (q-q plot)

– plot the density of the statistics, compute proportion above 1.96

– compute percent rejection

4.6.5 The Simulation Loop

The simulation loop requires so-called “flow control.” We will use a simple
for loop, which iterates over elements in a sequence. For example, we will
compute 1000 iterations of our random vectors and associated statistics.7

We start by initializing the number of replications as well as the two results
vectors:

> r <- 1000
> moran <- vector(mode="numeric",length=r)
> reject <- vector(mode="numeric",length=r)

Also, to avoid having to convert the rook4x4 neighbor list to a listw object
over and over again, we create a new spatial weights object, and also set the
sample size to 16 and the critical value to crit:

> n <- 16
> crit <- 0.05
> w4 <- nb2listw(rook4x4)

Next, we organize the main computations into a loop, using for(i in
1:r) as the iterator:

7Using 1000 replications is for illustrative purposes only, a “real” simulation experiment
would require a much larger sample to achieve a reasonable degree of precision.
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> for (i in 1:r){
+ y <- rnorm(n)
+ yz <- y - mean(y)
+ yy <- crossprod(yz)
+ wy <- lag.listw(w4,yz)
+ ywy <- crossprod(yz,wy)
+ mi <- ywy / yy
+ morans[i] <- mi
+ iz <- (mi - eirk4x4)/sdirk4x4
+ piz <- pnorm(iz,lower.tail=FALSE) * 2
+ if (piz < crit) { reject[i] <- 1 }
+ }

Note the use of an if statement in the loop. The condition in parentheses
is checked, and if it is evaluated as TRUE the action that follows is executed.
In this example, this means that when the null hypothesis is rejected (as a
two-sided test with a p-value of 0.05) then it is stored in the reject vector.
Otherwise, the initialized value of zero remains.

4.6.6 Analyzing the Results

The results are contained in the vectors morans and reject. We can use the
contents of morans to get the summary descriptive statistics for the Moran’s
I under the simulated null hypothesis, and use it to create histograms and
density plots.

For example, the mean and variance in the simulation were (these results
will obviously vary from simulation to simulation):

> mean(morans)
[1] -0.0744135
> sd(morans)
[1] 0.185987
> summary(morans)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.75700 -0.19800 -0.07318 -0.07441 0.04712 0.50160

These estimated moments can now be compared to the theoretical results
obtained in section 4.6.2.

The rejection frequency is the sum of rejections (values of 1 in the vector
reject) divided by the number of replications (r):
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> rejfreq <- sum(reject) / r
> rejfreq
[1] 0.018

While this seems well below the nominal Type I error of crit = 0.05, a
proper comparison needs to take into account the random variability in the
simulation itself. The rejection frequency can be considered to be an esti-
mate for the underlying probability of a series of Bernoulli random variates,
each with p = 0.05. The variance associated with r such draws is p(1−p)/r.
With p = 0.05 and r = 1000, this variance and the corresponding standard
error of the simulation experiment are:

> varsim <- crit * (1.0 - crit) / r
> varsim
[1] 4.75e-05
> sdsim <- sqrt(varsim)
> sdsim
[1] 0.006892024

An interval around the true Type I error of two standard deviations would
then be:

> simint <- c(crit - 2*sdsim,crit + 2*sdsim)
> simint
[1] 0.03621595 0.06378405

Taking this into account, our experiment would suggest that the Moran’s
I test statistic “significantly” under-rejects the null hypothesis in a small
data set of 16 observations, using the rook criterion to define contiguity.

4.6.7 Practice

You have now all the pieces to put together a function that simulates Moran’s
I under the null hypothesis for a generic sample size, number of replications
and weights matrix, reporting at a minimum the mean, standard deviation
and rejection frequency. Using the examples in Exercise 3, you can also
create density plots or histograms for the simulated statistic. You can assess
the difference in the properties of the test statistic between rook and queen
definition of contiguity and compare to when a torus adjustment is made.
You can experiment with distributions other than the normal as well.

As a challenge, you can also consider what it would take to compute the
inference under the randomization assumption.
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Simulating Moran’s I

For example, consider the following small function to run the simulations
for any rectangular lattice, using the rook contiguity and the randomiza-
tion option to carry out inference. Note that this function is slow, since
it uses the built-in moran.test function (and associated overhead) in each
iteration. For simulations, considerable speed up can be obtained by limit-
ing the computations purely to the necessary items, without the overhead
associated with all the features of a function like moran.test.

# sim.moran.rand.R
# generates reference distribution for Moran’s I
# calculates rejection frequency using randomization
# Usage:
# sim.moran.rand(rn,cn,rpl)
# Arguments
# rn: number of rows in the lattice
# cn: number of columns in the lattice
# rpl: number of replications

sim.moran.rand <- function(rn,cn,rpl,pvalue=0.05)
{

morans <- vector(mode="numeric",length=rpl)
reject <- vector(mode="numeric",length=rpl)
w <- nb2listw(cell2nb(rn,cn))
n <- rn * cn
for (i in 1:rpl){

y <- rnorm(n)
mi <- moran.test(y,w,alternative="two.sided")
morans[i] <- mi$statistic
if (mi$p.value) { reject[i] <- 1}
}

rejfreq <- sum(reject) / rpi
value <- list(morans = morans, rej = rejfreq)

}

To run this function, source it first (>source("sim.moran.rand.R")),
then invoke it, for example. as in:

> resu <- sim.moran.rand(5,5,1000)
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The result is a list containing a vector with all the computed statistics in
resu$morans and the rejection frequency in resu$rej:

> resu$rej
[1] 0.06

A pdf file with a frequency plot of the simulated distribution is con-
structed as:

> pdf(file="moransim.pdf")
> plot.density(zz,main="Moran’s I under Null - Randomization",
+ xlab="Reference Distribution",lwd=2,col=2)
> dev.off()

The resulting plot is given in Figure 4.2 on p. 59. Other summaries are
possible as well, such as histograms, qq plots or descriptive statistics.
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Figure 4.2: Moran’s I Under the Null.
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Exercise 5

Monte Carlo Simulation (2)
Assessing the Properties of an
Estimator

5.1 Objectives

The purpose of this exercise is to develop some further skills in designing
and carrying out a Monte Carlo simulation experiment, this time focused on
the properties of an estimator. The main objective is to obtain results for
the bias, standard error and mean squared error of an estimator for different
scenarios of error distributions. Along the way, we will review ordinary least
squares regression in R, as well as how to simulate spatially correlated error
terms (using spdep).

As before, make sure spdep is loaded before starting the exercises, using
library(spdep), and that the columbus data frame is attached.

5.2 Ordinary Least Squares Regression

We will focus on the ordinary least squares estimator in the linear regression
model:

y = Xβ + ε, (5.1)

where y is a n by 1 vector of observations on the dependent variable, X is
a n by k matrix of observations on the explanatory variables with matching
k by 1 coefficient vector β, and ε is a n by 1 vector of random error terms.
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For now, we will assume that the error terms are independent, identically
distributed (i.i.d.).

The familiar OLS estimator for β, β̂ is:

β̂ = (X ′X)−1X ′y, (5.2)

where (X ′X) is a k by k matrix and X ′y is a k by 1 vector.
Under the classical regularity conditions, the OLS estimator is unbiased,

such that E[β̂] = β and its precision can be obtained from

V ar[β̂] = σ2(X ′X)−1, (5.3)

where σ2 is the unknown error variance, estimated as σ̂2 = e′e/(n−k), with
e = y −Xβ̂ as the vector of OLS residuals.

5.2.1 OLS Using lm

The standard approach to get OLS estimates in R is to use the linear model
or lm functionality. This gets passed a formula object, which takes the form
y ∼ x1 + x2, where y is the dependent variable and the variables to the
right of the ∼ are the explanatory variables. Check help(lm) for extensive
documentation of the various options.

For example, using the columbus data frame and the variables CRIME,
INC, and HOVAL, the standard regression yields:

> col1 <- lm(CRIME ~ INC + HOVAL)
> summary(col1)

Call:
lm(formula = CRIME ~ INC + HOVAL)

Residuals:
Min 1Q Median 3Q Max

-34.418 -6.388 -1.580 9.052 28.649

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 68.6190 4.7355 14.490 < 2e-16 ***
INC -1.5973 0.3341 -4.780 1.83e-05 ***
HOVAL -0.2739 0.1032 -2.654 0.0109 *
---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 11.43 on 46 degrees of freedom
Multiple R-Squared: 0.5524, Adjusted R-squared: 0.5329
F-statistic: 28.39 on 2 and 46 DF, p-value: 9.34e-09

The result object col1 has many attributes, including the vector of coef-
ficients, col1$coefficients, the vector of residuals, col1$residuals, and
the predicted values, col1$fitted.values.

5.2.2 OLS Matrix Algebra

In a simulation experiment, one needs to avoid recomputing items that do
not change between replications. For example, if an OLS estimation is part
of a replication loop, and the design matrix (X) does not change between
replications, using a call to lm is not a good idea. Instead, you want to
compute all the parts that do not change before the loop is started and only
keep what changes inside the loop.

In the case of OLS, this means that we need to compute the estimates
by using matrix algebra. From equation 5.2, we know that this involves the
computation of two cross products, the inverse of a cross product, and the
product of a matrix with a vector. The matrix products are straightforward
to implement, using the crossprod and %*% operators. The inverse is some-
thing that usually requires some care, and for numerical stability a Cholesky
decomposition or qr approach is often preferable. For this example, we will
use the solve operator. This supports two operations, the inverse of a ma-
trix, such as solve(A), and the solution to a system of linear equations, as
solve(A,b), where the result equals A−1b.

5.2.3 Example

Before proceeding to the solution of the OLS normal equations, we first need
to turn the relevant elements of the columbus data frame into vectors and
matrices. For the dependent variable, this is a simple assignment:

> y <- CRIME
> y
[1] 15.725980 18.801754 30.626781 ... 0.178269
[8] 38.425858 30.515917 34.000835 ... 57.066132
...
[43] 36.663612 25.962263 29.028488 ... 22.541491
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For the matrix of observations on the explanatory variables, X, we use the
cbind function and exploit the recycling rule to add a vector of ones as the
first column:

> X <- cbind(1,INC,HOVAL)
> X

INC HOVAL
[1,] 1 19.531 80.467
[2,] 1 21.232 44.567
...
[49,] 1 18.796 35.800

Note how even though we only include the scalar 1, the recycling rule turns
this into a vector of the same length as the other two vectors.

Next, we need to construct the matrix of cross products X ′X and the
vector X ′y:

> XX <- crossprod(X)
> XX

INC HOVAL
49.000 704.372 1883.375

INC 704.372 11686.673 29600.442
HOVAL 1883.375 29600.442 88757.619
> Xy <- crossprod(X,y)
> Xy

[,1]
1721.312

INC 21557.532
HOVAL 57640.624

Note how we only need to specify X as the argument in the first crossprod
operation, since R constructs X ′X by default. The inverse (X ′X)−1 follows
directly, as:

> XXi <- solve(XX)
> XXi

INC HOVAL
0.171498009 -0.0072068055 -0.0012356172

INC -0.007206805 0.0008538132 -0.0001318211
HOVAL -0.001235617 -0.0001318211 0.0000814476
> XX %*% XXi
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INC HOVAL
1.000000e+00 3.018903e-17 7.543415e-18

INC -5.933489e-15 1.000000e+00 -1.250043e-16
HOVAL -1.711690e-14 -1.422552e-15 1.000000e+00

The OLS estimates follow as:

> bols <- XXi %*% Xy
> bols

[,1]
68.6189611

INC -1.5973108
HOVAL -0.2739315

A more efficient (and numerically more accurate) way is to include both XX
and Xy in the solve operation, as:

> b <- solve(XX,Xy)
> b

[,1]
68.6189611

INC -1.5973108
HOVAL -0.2739315

The drawback of this for our simulation is that it does not give us a separate
(X ′X)−1, which is the part that remains constant between replications.
Also, we need the inverse separately if we want to compute the standard
errors of the OLS estimates and the usual t-test statistics.

First, we need to obtain an estimate for the error variance. This requires
the calculation of the residuals and their sum of squares, which then need
to be divided by the degrees of freedom, as:

> e <- y - X %*% b
> e

[,1]
[1,] 0.3465419
[2,] -3.6947990

...
[49,] -6.2476690

> ee <- crossprod(e)
> ee
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[,1]
[1,] 6014.893

> vare <- ee / (nrow(X) - ncol(X))
> vare

[,1]
[1,] 130.7585
> sqrt(vare)

[,1]
[1,] 11.43497

Compare to the results printed in the summary of the lm function.
The standard errors of the estimates are the square roots of the diagonal

elements of the matrix σ̂2(X ′X)−1. We extract these by means of the diag
function and apply the square root function, to yield:

> varb <- vare * diag(XXi)
> seb <- sqrt(varb)
> seb
[1] 4.7354861 0.3341308 0.1031987

Note how we do not need to use the matrix multiplication operator to mul-
tiply the scalar vare with the diagonal elements of the inverse matrix. The
t-test statistics then follow as the ratio of the coefficient estimates over their
standard error:

> tb <- b / seb
> tb

[,1]
14.490373

INC -4.780496
HOVAL -2.654409

The associated probabilities are found from the Student t distribution (note
the use of the abs function for this to work properly):

> pb <- pt(abs(tb),df=nrow(X)-ncol(X),lower.tail=FALSE) * 2
> pb

[,1]
9.210890e-19
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INC 1.828960e-05
HOVAL 1.087450e-02

Again, compare to the output of lm applied to the Columbus example.

5.2.4 Practice

Use the police sample data set to replicate the regression in the 1992 Re-
gional Science and Urban Economics Kelejian-Robinson article. For sim-
plicity, you could also use a subset of the regressors. The Kelejian-Robinson
specification was a regression of police expenditures on the tax rate, inter-
governmental transfers, per capital income, crime rate, unemployment rate,
home ownership, percent college, percent white and percent commuters (see
Kelejian and Robinson 1992, pp. 323–324). Use both the standard lm func-
tion as well as an explicit matrix computation.

Kelejian-Robinson Baseline OLS Regression

> police.ols <- lm(POLICE ~ TAX + TRANSFER + INC + CRIME +
+ UNEMP + OWN + COLLEGE + WHITE + COMMUTE)
> summary(police.ols)

Call:
lm(formula = POLICE ~ TAX + TRANSFER + INC + CRIME + UNEMP +

OWN + COLLEGE + WHITE + COMMUTE)

Residuals:
Min 1Q Median 3Q Max

-841.75 -99.18 15.94 127.21 1007.11

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.858e+02 5.136e+02 -0.946 0.3474
TAX 2.182e-01 4.715e-01 0.463 0.6450
TRANSFER 7.553e-02 2.819e-03 26.789 < 2e-16 ***
INC 1.028e-01 5.031e-02 2.043 0.0447 *
CRIME 1.331e+00 1.661e-01 8.011 1.46e-11 ***
UNEMP -1.990e+01 1.724e+01 -1.154 0.2522
OWN -7.929e+00 5.658e+00 -1.401 0.1654
COLLEGE -3.686e-01 4.013e+00 -0.092 0.9271
WHITE -3.408e-01 2.586e+00 -0.132 0.8955
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COMMUTE 3.268e+00 2.996e+00 1.091 0.2789
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 272.4 on 72 degrees of freedom
Multiple R-Squared: 0.9708, Adjusted R-squared: 0.9671
F-statistic: 265.9 on 9 and 72 DF, p-value: < 2.2e-16

5.3 Spatial Autoregressive Random Variables

In Exercise 4, we conducted a simulation experiment under the null, when
it was not necessary to specify a particular form or magnitude for the spa-
tial autocorrelation. In order to obtain spatially autocorrelated random
variables, we will need to apply a transformation that turns uncorrelated
variates into correlated ones. We will focus on spatial autoregressive (SAR)
and spatial moving average (SMA) processes, although this by no means ex-
hausts the set of possibilities. In this section, we deal with SAR processes.
SMA processes are treated in section 5.4.

In its simplest form, a spatial autoregressive process is:

ε = ρWε+ u (5.4)

where u and ε are n by 1 random vectors, ρ is the autoregressive parameter,
and W is a n by n spatial weights matrix. The u vector is i.i.d., and ε is
spatially correlated. We can obtain ε directly from u by means of a so-called
spatial autoregressive transformation:

ε = (I − ρW )−1u. (5.5)

The package spdep contains the function invIrM which constructs the
inverse matrix (I − ρW )−1 required in a spatial autoregressive transforma-
tion. It takes as arguments a neighbor list (nb) or weights list (listw)
object, followed by a value for the autoregressive parameter (rho). In addi-
tion, a list of general weights can be optionally included, as well as a specific
style for the weights (the default is style="W", a row-standardized weights
matrix). The result is an n by n matrix. In contrast to the original spatial
weights, which tend to be sparse, the inverse is typically dense, requiring a
lot of memory for larger data sets.
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5.3.1 Example

Use the col.gal.nb neighbor list for Columbus to create a spatial autore-
gressive transformation matrix, with 0.5 for the autoregressive parameter:

> c05 <- invIrM(col.gal.nb,0.5)

Now use this transformation matrix to turn a vector of 49 standard (uncorre-
lated) random variates into a vector of spatially correlated random variables,
as:1

> uu <- rnorm(49)
> mean(uu);sd(uu)
[1] 0.2138447
[1] 1.247263
> e05 <- c05 %*% uu
> mean(e05);sd(e05)
[1] 0.3113457
[1] 1.397368

Check with a Moran spatial autocorrelation test:

> moran.test(e05,nb2listw(col.gal.nb),randomisation=FALSE,
+ alternative="two.sided")

Moran’s I test under normality

data: e05
weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = 3.4981, p-value = 0.0004687
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.308448612 -0.020833333 0.008860962

5.3.2 Practice

Use one of the spatial weights created for the regular lattices in Exercise 4,
or the spatial weights for the police sample data set to generate vectors

1While the standard deviation of the spatially correlated e05 is reported, this is not
totally valid, since these variables are heteroskedastic and thus do not have a common
variance.
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with spatially autocorrelated normal random variables. Experiment with
different values for the spatial autoregressive parameter and check if the
moran.test rejects the null. Specifically, check for small values of rho, such
as 0.1 or 0.05.

Creating Spatially Autoregressive Variables

Consider a simple function (without any error checking) that takes as argu-
ments a vector, a nb object and a value for the autoregressive parameter. It
uses this and the spdep function invIrW to create a spatial autoregressive
transformation.

# sar.transform
# transform a vector into spatially autoregressive vector
# Usage:
# sar.transform(x,w,rho)
# Arguments:
# x: vector of values
# w: spatial weights nb object
# rho: spatial autoregressive coefficient
# Value:
# vector
# uses spdep invIrM
# WARNING: no error checking!

sar.transform <- function(x,w,rho)
{

irw <- invIrM(w,rho)
wx <- irw %*% x
wx

}

Create a spatial autoregressive transformation of the POLICE variable,
and test for spatial autocorrelation as:

> source("sar.transform.R")
> wpolice05 <- sar.transform(POLICE,polgal,0.5)
> moran.test(wpolice05,polrook,alternative="two.sided")

Moran’s I test under randomisation
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data: wpolice05
weights: polrook

Moran I statistic standard deviate = 6.1307, p-value = 8.752e-10
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.365968180 -0.012345679 0.003807943

5.4 Spatial Moving Average Random Variables

A spatial moving average process is:

ε = ρWu+ u. (5.6)

In order to construct a random variable that follows this process, no inverse
is required, but only the sum of a random variable and its spatial lag, the
latter multiplied by the spatial parameter. This is a simple operation that
does not require matrix operations, but can be implemented using the sparse
lag.listw function in spdep.

5.4.1 Example

Using the same col.gal.nb neighbor list and the same vector of standard
normal variates uu as in Section 5.3.1, create a spatial lag for the random
vector:

> wu <- lag.listw(nb2listw(col.gal.nb),uu)

Now, carry out a spatial moving average transformation as:

> em05 <- 0.5 * wu + uu
> mean(em05);sd(em05)
[1] 0.2490343
[1] 1.279354

Compare the degree of spatial autocorrelation to that of the SAR coun-
terpart with a moran.test:

> moran.test(em05,nb2listw(col.gal.nb),randomisation=FALSE,
+ alternative="two.sided")
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Moran’s I test under normality

data: em05
weights: nb2listw(col.gal.nb)

Moran I statistic standard deviate = 2.5339, p-value = 0.01128
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.217686051 -0.020833333 0.008860962

5.4.2 Practice

Use the same weights and normal random variates as in 5.3.2 to create a new
random vector that follows a spatial moving average process. Compare the
degree of spatial autocorrelation as indicated by a Moran test for different
values of the spatial parameter.

Creating Spatial Moving Average Variables

Again, consider a simple function (without any error checking) that takes as
arguments a vector, a nb object and a value for the spatial moving average
parameter. It uses this and the spdep function lag.listw to create a spatial
moving average transformation.

# sma.transform
# transform a vector into spatial moving average vector
# Usage:
# sma.transform(x,w,rho)
# Arguments:
# x: vector of values
# w: spatial weights nb object
# rho: spatial autoregressive coefficient
# Value:
# vector
# uses spdep lag.listw
# WARNING: no error checking!

sma.transform <- function(x,w,rho)
{

wx <- lag.listw(nb2listw(w),x)
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smax <- rho * wx + x
smax

}

As before, source the function and invoke it to transform the POLICE variable
into a moving average form.

> source("sma.transform.R")
> smapolice05 <- sma.transform(POLICE,polgal,0.5)
> moran.test(smapolice05,polrook,alternative="two.sided")

Moran’s I test under randomisation

data: smapolice05
weights: polrook

Moran I statistic standard deviate = 5.1891, p-value = 2.113e-07
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance

0.302526841 -0.012345679 0.003682022

5.5 A Simulation Experiment

We will implement a simple simulation experiment to assess the properties
of the OLS estimator when the regression error term follows a spatial autore-
gressive process. We know from theory that OLS should remain unbiased,
but will be less efficient than for i.i.d. errors. Also, the standard errors of
the estimates as suggested by OLS will be biased and tend to underestimate
the true variability of the estimates.

The basic design of the experiment consists of generating vectors of sim-
ulated “observations” on y by using y = Xβ + ε, for a fixed matrix X and
a given parameter vector β. The ε vectors are constructed by a spatial
autoregressive transformation. Starting with an i.i.d. random vector u, a
value for the parameter ρ and a spatial weights matrix, ε = (I − ρW )−1u.
The simulated ε is added to Xβ to yield the y vector. The product Xβ is
fixed and must only be computed once, so it should be outside the main
simulation loop.

There are many design aspects that need to be controlled for in a simu-
lation experiment such as this one. Paradoxically, one aspect that requires
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very little attention is the choice of the value for the true β parameters.
Typically, one takes a single vector of random X values and sets β = 1 for
simplicity. In order to make sure the regressions have a similar and reason-
able fit, the variance of the simulated X is chosen together with the variance
of the error term. Consider that the true regression total variance (of y) can
be decomposed into variance due to X and variance due to the error term,
we select the two variances such that the regression R2 is something like 0.9.
For example, we could randomly generate X as a normal variate with mean
zero and variance 9, and the error term as a standard normal variate. This
would yield regressions with “on average” an R2 of 0.9. Note that this only
holds under the null of no spatial autocorrelation. The spatially correlated
error terms will no longer be homoskedastic, so that the notion of an R2 is
not valid in a strict sense, nor is there a common error variance.

The properties of the estimator can be quantified in a number of ways.
First, we consider the bias of the estimator, which is estimated as the differ-
ence between the average of β̂ across all replications and the true parameter
value β:

bias =
∑
r

β̂r/R− β (5.7)

where R is the total number of replications. The precision of the estima-
tor can be measured as the variance (or, standard error) of the reference
distribution of the β̂r:

V ar[β̂] = (1/R)
∑
r

(β̂r − ¯̂
β)2, (5.8)

where ¯̂
β =

∑
r β̂r/R, and the standard error is the square root of this result.

The result for the simulated data can be compared to its theoretical coun-
terpart, the matching diagonal element in σ2(X ′X)−1 with σ2 replaced by
the value chosen for the simulated error term.

Alternatively, the measure of precision can be computed with respect to
the true value of β, yielding the mean squared error (MSE):

MSE[β̂] = (1/R)
∑
r

(β̂r − β)2. (5.9)

The MSE is particularly appropriate when comparing estimators that are
not necessarily unbiased, since it consists of the sum of the variance and the
squared bias. For an unbiased estimator, the latter is zero (“in expected
value”) and MSE and variance are the same.
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5.5.1 Setting up the Experiment

The simulation experiment will require the following steps:

• initialization of parameters

– set the number of replications (r), sample size (n), value range for
the autoregressive parameters (rho), variance of the error terms
(sigma)

• initialization and preprocessing of X matrix

– generate a random vector (x) with variance such that the regres-
sion R2 is a given target value (e.g., 0.9).

– create the X matrix as 1 + x, this implicitly sets β to (1.0, 1.0)

– compute XXi = (X ′X)−1

– compute vb2 = σ2(X ′X)−1
2,2, the theoretical variance of OLS

• initialization and preprocessing of spatial weights

– create a neighbor object for a chosen regular lattice layout (cell2nb)

– if needed, convert neighbor object to list weights (nb2listw)

• initialize vector (or matrix) to hold estimated coefficients

• loop over values for rho

– create SAR transformation matrix for given rho and weights
(invIrM)

• main simulation loop

– generate i.i.d. random vector uu

– transform uu to spatially autoregressive vector eps

– compute dependent variable vector y = Xb + eps

– compute cross product Xy = X ′y

– obtain OLS estimate b = XXi %*% Xy

– store b in results vector

• summarize results

– compute average b
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– compute bias

– compute variance of b

– compare variance to “theoretical” variance

– compute MSE of b

– (optional) graph reference distribution of b

5.5.2 Example

We start with the various initializations, to keep things generic for later
incorporation into a function:

> n <- 49
> r <- 1000
> rho <- c(0.0, 0.2, 0.5, 0.7, 0.9)

Next we construct the X matrix, its cross product and inverse:

> X <- cbind(1,rnorm(n,0,3))
> XX <- crossprod(X)
> XX

[,1] [,2]
[1,] 49.000000 -3.904727
[2,] -3.904727 391.827489
> XXi <- solve(XX)
> XXi

[,1] [,2]
[1,] 0.0204243828 0.0002035376
[2,] 0.0002035376 0.0025541719
> vb2 <- XXi[2,2]
> vb2
[1] 0.002554172

Note that we use 3 as the standard deviation in the standard normal variate
(to obtain a variance of 9) and how again the recycling rule is exploited to
create the constant term. The theoretical variance of the OLS estimator for
β2 is extracted as the [2,2] element of the variance matrix (since σ2 = 1).
Also, the value of Xβ can be pre-computed as the row sum of the matrix X
(rather than an explicit matrix-vector multiplication):

> Xb <- rowSums(X)
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Now, we construct a neighbor list for rook contiguity on a 7 by 7 regular
lattice. The spatial autoregressive transformation is different for each value
of rho, so that must be carried out inside the loop over the values of rho:

> w <- cell2nb(7,7)

Next, initialize the matrix that will hold the results for β2 (the slope)
for each of the values of rho (0.0 to 0.9, as columns) and in each of the
replications:

> bres <- matrix(0, nrow=r, ncol= length(rho))
> bres

[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 0 0

...
[999,] 0 0 0 0 0
[1000,] 0 0 0 0 0

We are now ready for the main simulation loop. There is actually a
double loop, one over the elements of rho, the second over the replications.
In the outer loop, the spatial autoregressive transformation matrix is built
for the corresponding value of rho. In the inner loop, the random errors are
generated and transformed, the “observed” y is constructed, the regression
is estimated and the result for β̂ stored in bres:

> for (j in 1:length(rho)) {
+ iw <- invIrM(w,rho[j])
+ for (i in 1:r) {
+ e <- iw %*% rnorm(n)
+ y <- Xb + e
+ Xy <- crossprod(X,y)
+ b <- XXi %*% Xy
+ bres[i,j] <- b[2]
+ }
+ }

The summary characteristics of the OLS estimator are:

> summary(bres)
X1 X2 X3 X4

Min. :0.8474 Min. :0.8357 Min. :0.8364 Min. :0.8155
1st Qu.:0.9670 1st Qu.:0.9663 1st Qu.:0.9640 1st Qu.:0.9637
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Median :0.9996 Median :1.0015 Median :0.9986 Median :1.0013
Mean :0.9993 Mean :1.0006 Mean :0.9999 Mean :1.0006
3rd Qu.:1.0333 3rd Qu.:1.0361 3rd Qu.:1.0349 3rd Qu.:1.0392
Max. :1.1515 Max. :1.1707 Max. :1.2232 Max. :1.1838

X5
Min. :0.7475
1st Qu.:0.9337
Median :0.9990
Mean :0.9985
3rd Qu.:1.0607
Max. :1.2515

This illustrates how the mean and median don’t change much from the ex-
pected value of 1, but the range of the distribution widens with ρ (first
slightly, but then quite dramatically with ρ = 0.9). More precise character-
istics of the distribution are the average (bavg, note the use of the function
colMeans), the bias (bias), variance (varb, note again the use of colMeans),
the standard error (sdeb), difference with the theoretical standard error (the
square root of vb2), and the mean squared error (mseb):

> bavg <- colMeans(bres)
> bavg
[1] 0.9993119 1.0006317 0.9999488 1.0006297 0.9985044
> bias <- bavg - 1.0
> bias
[1] -6.880809e-04 6.316951e-04 -5.124518e-05 6.296576e-04

-1.495599e-03
> varb <- colMeans((bres - bavg)^2)
> varb
[1] 0.002373828 0.002616419 0.002882452 0.003484847 0.008237334
> sdeb <- sqrt(varb)
> sdeb
[1] 0.04872195 0.05115094 0.05368848 0.05903260 0.09075976
> sdeb - sqrt(vb2)
[1] -0.0018168670 0.0006121246 0.0031496605 0.0084937801

0.0402209418
> mseb <- colMeans((bres - 1)^2)
> mseb
[1] 0.002371185 0.002614124 0.002878571 0.003485413 0.008236709

In essence, the OLS estimator remains unbiased, even with ρ = 0.9, but its
variance, standard error and mean squared error are affected. They increase
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with ρ, first slightly, but then much more so for ρ = 0.9.
To end in beauty, we will plot the empirical densities for the estimates

obtained in the simulation, for each of the values of ρ and use some fancy
plotting techniques to combine them all in one graph, plot in different colors,
and add a legend to boot. As in Exercise 3, we start by turning the columns
of the matrix bres into density objects, zz0 through zz4:

> zz0 <- density(bres[,1])
> zz1 <- density(bres[,2])
> zz2 <- density(bres[,3])
> zz3 <- density(bres[,4])
> zz4 <- density(bres[,5])

Next, we draw a density plot for the last graph (zz4), set the main title
and the label for the x-axis (xlab), and specify the color to be red (2). In
addition, to make sure that all the plots will fit on the same graph, we use
the min and max values from the summary(bres) to set the xlim and ylim
parameters (the range for the values on the x- and y-axis respectively).
We further add the other graphs as lines (since the add option is not
implemented for a density.plot), specifying the x-value as zz $x and the
y-value as zz $y, with a different color for each. Finally, we add a legend
(one of the more complex but also more powerful options). We set the
coordinates for the upper left corner, specify the text for the legend (using
paste to add the words rho = in front of the value taken from the rho
vector), set the type to line (lty=1), in the same dimension as the legend
“words” (i.e., a five element vector), and set the matching colors in a vector
(col):

> plot.density(zz4,main="Density of beta hat",xlab="beta hat",
+ xlim=c(0.7,1.3),ylim=c(0,8),col=2)
> lines(zz3$x,zz3$y,col=6)
> lines(zz2$x,zz2$y,col=5)
> lines(zz1$x,zz1$y,col=3)
> lines(zz0$x,zz0$y,col=4)
> legend(0.7,8,paste("rho = ",rho),lty=c(1,1,1,1,1),
+ col=c(4,3,5,6,2))

The result looks like Figure 5.1, illustrating the effect of ρ on the spread of
the distribution (of course, you need colors to distinguish the lines).
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Figure 5.1: Empirical Distribution of β̂ for different ρ.

5.5.3 Practice

You can now combine the various commands into a function that allows
you to make the sample size generic, specify the type of distribution for
the error term, include both spatial autoregressive as well as spatial moving
average transformations, etc. In addition, you could try to assess the effect
on OLS of an omitted spatial lag variable (the transformation is slightly
more complex than in the error case). The sky is the limit ...
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Exercise 6

Regression Diagnostics for
Spatial Autocorrelation

6.1 Objectives

This exercise provides and overview of specification testing for spatial au-
tocorrelation in regression residuals. We will build upon the basic linear
regression reviewed in Section 5.2 and use as a running example the homi-
cide regression for Southern US counties, detailed in Chapters 24 and 25 of
the GeoDa Workbook (Anselin 2005). We will focus on Moran’s I for regres-
sion residuals and on the Lagrange Multiplier test statistics for spatial error
and spatial lag correlation.

6.2 Preliminaries

As before, make sure spdep is loaded before starting the exercises, using
library(spdep).

First, we will create two text files containing a subset of the variables
from the SOUTH data set. For the purposes of this exercise, we will be using
the variables pertaining to 1960 and 1990 and create a different data frame
for each. Use the same approach as outlined in Section 2.2.1. Specifically,
load the south.shp file into GeoDa, with FIPSNO as the Key Variable.
Select Tools > Data Export > Ascii. In the dialog, specify south.dbf
as the input file and south60.txt as the output file. Select FIPSNO, HR60,
RD60, PS60, MA60, DV60 and UE60.1

1This replicates the analysis in Baller et al. (2001), although the spatial weights used
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Figure 6.1: Cumulative first and second order rook weights

Next, click on Export and Done to finish. Check the contents of the
south.txt file and make sure it shows 1412,7 on the first line and the
variable names on the second line. The data, record by record, and comma-
delimited make up the remainder. Copy the file to the R working directory
if it is not there already.

Repeat the same procedure to create a file south90.txt with the vari-
ables FIPSNO, HR90, RD90, PS90, MA90, DV90 and UE90.

Also create two spatial weights files. One is a simple rook contiguity
(southrk.gal), the other one that uses a cumulative first and second or-
der rook criterion. For the latter, in GeoDa, select Tools > Weights >
Create, enter south.shp as the input file and southrk12.gal as the out-
put file and FIPSNO as the ID. Select the rook criterion, change the order of
contiguity to 2 and check the box to Include all the lower orders, as
shown in Figure 6.1. For the first order rook weights, proceed in the same
way, but leave the option to rook.

Copy all the files to the R working directory. First, create a separate
data frame for the south60 and south90 data and make sure the variables
are entered properly, as in:

> south60 <- read.csv("south60.txt",header=TRUE,skip=1)
> summary(south60)

FIPSNO HR60 RD60
Min. : 1001 Min. : 0.000 Min. :-1.85781
1st Qu.:13284 1st Qu.: 3.213 1st Qu.: 0.04904
Median :37088 Median : 6.245 Median : 0.66042
Mean :31936 Mean : 7.292 Mean : 0.68974
3rd Qu.:48158 3rd Qu.: 9.956 3rd Qu.: 1.32815
Max. :54109 Max. :92.937 Max. : 3.45354
...

here are slightly different. Check the article and the code book for the nat.shp sample
data set for a detailed explanation of the variables and theoretical background.
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and

> south90 <- read.csv("south90.txt",header=TRUE,skip=1)
> summary(south90)

FIPSNO HR90 RD90
Min. : 1001 Min. : 0.000 Min. :-2.2006
1st Qu.:13284 1st Qu.: 4.805 1st Qu.:-0.1021
Median :37088 Median : 8.221 Median : 0.3720
Mean :31936 Mean : 9.549 Mean : 0.5536
3rd Qu.:48158 3rd Qu.:13.038 3rd Qu.: 1.1203
Max. :54109 Max. :64.261 Max. : 5.5831
. . .

Next, with spdep active, turn both gal text files into a neighbor object
by means of the read.gal function, as in:

> srk12 <- read.gal("southrk12.gal",override.id=TRUE)
> summary(srk12)
Neighbour list object:
Number of regions: 1412
Number of nonzero links: 23768
Percentage nonzero weights: 1.192129
Average number of links: 16.83286
Link number distribution:

2 3 4 5 6 7 8
1 4 4 8 9 11 31
. . .

1 least connected region:
54029 with 2 links
1 most connected region:
51015 with 29 links

and finally into a listw object as in:

> srk12w <- nb2listw(srk12)
> summary(srk12w)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 1412
Number of nonzero links: 23768
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Percentage nonzero weights: 1.192129
Average number of links: 16.83286
Link number distribution:

2 3 4 5 6 7 8
1 4 4 8 9 11 31
. . .

1 least connected region:
54029 with 2 links
1 most connected region:
51015 with 29 links

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 1412 1993744 1412 180.5536 5703.863

Proceed in the same way for southrk.gal:

> srk <- read.gal("southrk.gal",override.id=TRUE)
> srkw <- nb2listw(srk)
> summary(srkw)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 1412
Number of nonzero links: 7700
Percentage nonzero weights: 0.3862081
Average number of links: 5.453258
Link number distribution:

1 2 3 4 5 6 7 8
16 32 65 187 378 435 230 56

....

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 1412 1993744 1412 552.1101 5767.949

We are now ready to start the analysis.
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6.3 Baseline OLS Regression

We start by creating an lm object that will need to be passed to the spe-
cialized functions that carry out the spatial autocorrelation tests. We use
the familiar lm function. We start with the analysis for 1960 with HR60 as
dependent variable and explanatory variables RD60 + PS60 + MA60 + DV60
+ UE60. First, we attach the south60 data frame so that we can easily refer
to the variables:

> attach(south60)
> sols60 <- lm(HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
> summary(sols60)

Call:
lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)

Residuals:
Min 1Q Median 3Q Max

-13.5265 -3.6178 -0.8159 2.4218 88.4821

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.21547 1.12457 11.752 < 2e-16 ***
RD60 1.76448 0.19824 8.901 < 2e-16 ***
PS60 0.29930 0.21426 1.397 0.163
MA60 -0.27521 0.03806 -7.230 7.89e-13 ***
DV60 1.17945 0.24352 4.843 1.42e-06 ***
UE60 -0.29186 0.07117 -4.101 4.35e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.09 on 1406 degrees of freedom
Multiple R-Squared: 0.1037,Adjusted R-squared: 0.1005
F-statistic: 32.52 on 5 and 1406 DF, p-value: < 2.2e-16

The values are identical to those listed in the GeoDa Workbook (Figure
24.3), as they should be.

We next create a similar object for the 1990 analysis, using the same
variables (with a 90 posfix). First detach the south60 data frame and
attach the south90 data frame.
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> detach(south60)
> attach(south90)
> sols90 <- lm(HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
> summary(sols90)

Call:
lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)

Residuals:
Min 1Q Median 3Q Max

-19.5829 -3.5137 -0.7474 2.5908 41.8327

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.96250 1.78133 5.031 5.50e-07 ***
RD90 4.58778 0.21457 21.381 < 2e-16 ***
PS90 1.95589 0.20540 9.522 < 2e-16 ***
MA90 -0.04948 0.04890 -1.012 0.312
DV90 0.46159 0.11517 4.008 6.45e-05 ***
UE90 -0.52440 0.07003 -7.489 1.22e-13 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.861 on 1406 degrees of freedom
Multiple R-Squared: 0.3092,Adjusted R-squared: 0.3067
F-statistic: 125.8 on 5 and 1406 DF, p-value: < 2.2e-16

These results are identical to what is listed in Figure 25.2 of the GeoDa
Workbook. Relative to 1960, the overall fit is better in 1990. The signifi-
cances and signs are generally the same, except for PS not being significant
in 1960 while significant in 1990, and the reverse for MA.

6.4 Moran’s I for Regression Residuals

In order to carry out Moran’s I test on the residuals in these regressions,
we need to pass the regression object and a spatial weights object (listw)
to the lm.morantest function (check the help file for details). The print
command provides the results.

We start with the analysis for 1960 using the cumulative weights:
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> sols60.moran <- lm.morantest(sols60,srk12w)
> sols60.moran

Global Moran’s I for regression residuals

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srk12w

Moran I statistic standard deviate = 14.8749, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Observed Moran’s I Expectation Variance

1.365683e-01 -2.215366e-03 8.705017e-05

Note that the default setting for this statistic is to compute the p-value
for a one sided test. To get a two-sided test, the alternative argument
must be specified explicitly, as in:

> lm.morantest(sols60,srk12w,alternative="two.sided")

Global Moran’s I for regression residuals

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srk12w

Moran I statistic standard deviate = 14.8749, p-value < 2.2e-16
alternative hypothesis: two.sided
sample estimates:
Observed Moran’s I Expectation Variance

1.365683e-01 -2.215366e-03 8.705017e-05

In this example, it does not make a difference, due to the large sample
size and the extreme significance of the test statistic. However, in small
samples, inference will be affected when the wrong option is used.

For the simple first order rook contiguity weights, the results are very
similar:

> lm.morantest(sols60,srkw,alternative="two.sided")
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Global Moran’s I for regression residuals

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srkw

Moran I statistic standard deviate = 8.3495, p-value < 2.2e-16
alternative hypothesis: two.sided
sample estimates:
Observed Moran’s I Expectation Variance

0.1356298451 -0.0024963269 0.0002736731

The results show a Moran’s I statistic of respectively 0.137 and 0.136,
which are highly significant and reject the null hypothesis of uncorrelated
error terms.

For 1990, similar results are obtained, with slightly smaller values for the
test statistic, 0.122 using the simple rook, and 0.009 using the cumulative
rook:

> lm.morantest(sols90,srkw,alternative="two.sided")

Global Moran’s I for regression residuals

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
weights: srkw

Moran I statistic standard deviate = 7.5134, p-value = 5.76e-14
alternative hypothesis: two.sided
sample estimates:
Observed Moran’s I Expectation Variance

0.1218894764 -0.0023982682 0.0002736415

and

> lm.morantest(sols90,srk12w,alternative="two.sided")

Global Moran’s I for regression residuals

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
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weights: srk12w

Moran I statistic standard deviate = 9.8644, p-value < 2.2e-16
alternative hypothesis: two.sided
sample estimates:
Observed Moran’s I Expectation Variance

8.993101e-02 -2.133033e-03 8.710495e-05

6.5 Lagrange Multiplier Test Statistics

The Morans I test statistic has high power against a range of spatial alterna-
tives. However, it does not provide much help in terms of which alternative
model would be most appropriate. The Lagrange Multiplier test statistics
do allow a distinction between spatial error models and spatial lag models.

Both tests, as well as their robust forms are included in the lm.LMtests
function. Again, a regression object and a spatial listw object must be
passed as arguments. In addition, the tests must be specified as a character
vector (the default is only LMerror), using the c( ) operator (concatenate),
as illustrated below.

First consider the 1960 results, for both spatial weights.

> lm.LMtests(sols60,srk12w,
+ test=c("LMerr","RLMerr","LMlag","RLMlag"))

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srk12w
LMerr = 205.9506, df = 1, p-value < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srk12w
RLMerr = 1.8681, df = 1, p-value = 0.1717

Lagrange multiplier diagnostics for spatial dependence
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data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srk12w
LMlag = 222.528, df = 1, p-value < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srk12w
RLMlag = 18.4456, df = 1, p-value = 1.748e-05

> lm.LMtests(sols60,srkw,
+ test=c("LMerr","RLMerr","LMlag","RLMlag"))

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srkw
LMerr = 66.4285, df = 1, p-value = 3.331e-16

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srkw
RLMerr = 5.1188, df = 1, p-value = 0.02367

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
weights: srkw
LMlag = 80.3219, df = 1, p-value < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)
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weights: srkw
RLMlag = 19.0122, df = 1, p-value = 1.299e-05

The results are listed in order with LMerr and RLMerr first, followed by
LMlag and RLMlag. The values for the srk12w weights correspond to the
results shown in Figure 24.4 of the GeoDa Workbook. Both LMerr and LMlag
are highly significant, with a slight edge for the latter. In a specification
search, this is an inconclusive results, necessitating the consideration of the
robust forms of the tests.

These provide a clear preference in favor of the lag alternative. While
RLMlag is still strongly significant, for both weights, there is much weaker
evidence given by RLMerr. For the srkw weights it is still marginally signif-
icant, but much less so than the robust lag test. However, for the srk12w
weights it is no longer significant (p = 0.17), clearly pointing to the lag
model as the proper alternative.

Interestingly, the results are the opposite for 1990:

> lm.LMtests(sols90,srk12w,
+ test=c("LMerr","RLMerr","LMlag","RLMlag"))

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
weights: srk12w
LMerr = 89.3063, df = 1, p-value < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
weights: srk12w
RLMerr = 22.3826, df = 1, p-value = 2.234e-06

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
weights: srk12w
LMlag = 71.6978, df = 1, p-value < 2.2e-16
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Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
weights: srk12w
RLMlag = 4.774, df = 1, p-value = 0.02889

> lm.LMtests(sols90,srkw,
+ test=c("LMerr","RLMerr","LMlag","RLMlag"))

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
weights: srkw
LMerr = 53.6508, df = 1, p-value = 2.395e-13

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
weights: srkw
RLMerr = 5.5171, df = 1, p-value = 0.01883

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
weights: srkw
LMlag = 50.5794, df = 1, p-value = 1.144e-12

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90)
weights: srkw

RLMlag = 2.4457, df = 1, p-value = 0.1178
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Again, both LMerr and LMlag are highly significant for both weights.
However, the robust statistics point to the error model as the proper al-
ternative. For srk12w, RLMlag is only weakly significant (p = 0.03), but
RLMerr is still very strongly significant. The evidence is clearer for srkw,
where RLMlag reaches a p-value of 0.12, whereas RLMerr is significant with
p=0.02.2

With this information in hand, we can select the spatial lag model as the
alternative for 1960 and the spatial error model as the alternative for 1990.
Given the magnitude of the test statistics for the different weights, we opt
for srkw12 for the lag model in 1960 and srkw for the error model in 1990.
Maximum Likelihood estimation is covered in the next chapter.

6.6 Practice

Run the diagnostics for the same specification in years 1970 and 1980 and as-
sess whether a spatial lag or error model is the proper model. Alternatively,
use the police sample data set and rerun the regression from Kelejian and
Robinson (1992), using POLICE as the dependent variable, and TAX, INC,
CRIME, UNEMP, OWN, COLLEGE, WHITE and COMMUTE as explanatory variables
(see Kelejian and Robinson 1992, pp. 323–324). Does your analysis sup-
port the conclusions found in that article. Experiment with different spatial
weights to assess the sensitivity of your findings.

2These results are also shown in Figure 25.3 of the GeoDa Workbook.
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Exercise 7

Maximum Likelihood
Estimation of Spatial
Regression Models

7.1 Objectives

This exercise illustrates how to estimate spatial regression models using the
maximum likelihood method. Both spatial lag and spatial error models
are included. The example continues the analysis of Southern US county
homicides from the previous exercise and matches the results in Chapters
24 and 25 of the GeoDa Workbook (Anselin 2005).

7.2 Preliminaries

Make sure to have the spdep library active before starting the exerices,
or else invoke library(spdep). Also, you will need the data frames and
spatial weights for the 1960 and 1990 homicides used in Exercise 6. Refer
to Section 6.2 to recreate these if necessary.

7.3 ML Estimation of the Spatial Lag Model

Maximum Likelihood (ML) estimation of the spatial lag model is carried out
with the lagsarlm( ) function. The required arguments are a regression
formula, a data set and a listw spatial weights object. The default method
uses Ords eigenvalue decomposition of the spatial weights matrix (Ord 1975).
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There is also a sparse weights method available which may be necessary for
large(r) data sets. However, the inference provided by the sparse method is
limited (for details, see the help file).

In our example, we will use the srk12w weights and the south60 data
frame, with the same specification as for the OLS regression. The dependent
variable is HR60, and the explanatory variables are RD60 + PS60 + MA60 +
DV60 + UE60.

We create a new object as the output of the estimation procedure. This
will allow us to extract specific results, such as coefficients, residuals and
predicted values.

> lag60 <- lagsarlm(HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60,
+data=south60,srk12w)
> summary(lag60)

Call:lagsarlm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60,
data = south60, listw = srk12w)

Residuals:
Min 1Q Median 3Q Max

-14.97132 -3.25129 -0.79033 2.22485 86.27312

Type: lag
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.574961 1.172724 5.6066 2.064e-08
RD60 1.100473 0.196339 5.6050 2.083e-08
PS60 0.037912 0.202678 0.1871 0.85162
MA60 -0.175256 0.036712 -4.7738 1.808e-06
DV60 0.935208 0.230386 4.0593 4.922e-05
UE60 -0.132660 0.067353 -1.9696 0.04888

Rho: 0.53289 LR test value: 125.07 p-value: < 2.22e-16
Asymptotic standard error: 0.045668 z-value: 11.669 p-value: < 2.22e-16
Wald statistic: 136.16 p-value: < 2.22e-16

Log likelihood: -4488.967 for lag model
ML residual variance (sigma squared): 33.045, (sigma: 5.7485)
Number of observations: 1412
Number of parameters estimated: 8
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AIC: 8993.9, (AIC for lm: 9117)
LM test for residual autocorrelation
test value: 4.3536 p-value: 0.03693

The results match those reported in Figure 24.9 of the GeoDa Workbook
even though GeoDa uses a different numerical approach to maximize the
likelihood function. Some caution is needed with the eigenvalue approach
used in the sarlaglm function, since it may be numerically unstable for
large data sets (> 1, 000). In the current example, that does not seem to be
an issue. Note that compared to the OLS results, PS is still not significant,
but now UE has become only marginally significant. The autoregressive
coefficient of 0.533 is high in magnitude and highly significant.

The output also contains a LM test statistic for remaining spatial error
autocorrelation. The value of 4.35 is marginally significant (p = 0.037)
suggesting remaining issues with the specification of the spatial dependence.

Note how different the output is when you specify Matrix as the esti-
mation method instead of the default eigen:

> lag60s <- lagsarlm(HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60,
+ data=south60,srk12w,method="Matrix")
> summary(lag60s)

Call:lagsarlm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60,
data = south60, listw = srk12w, method = "Matrix")

Residuals:
Min 1Q Median 3Q Max

-14.97132 -3.25129 -0.79033 2.22485 86.27312

Type: lag
Coefficients: (log likelihood/likelihood ratio)

Estimate Log likelihood LR statistic Pr(>|z|)
(Intercept) 6.5750e+00 NA NA NA
RD60 1.1005e+00 -4.5049e+03 31.8236 1.688e-08
PS60 3.7912e-02 -4.4890e+03 0.0348 0.85211
MA60 -1.7526e-01 -4.5002e+03 22.5635 2.033e-06
DV60 9.3521e-01 -4.4971e+03 16.3583 5.243e-05
UE60 -1.3266e-01 -4.4908e+03 3.7600 0.05249

Rho: 0.53289 LR test value: 125.07 p-value: < 2.22e-16
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Log likelihood: -4488.967 for lag model
ML residual variance (sigma squared): 33.045, (sigma: 5.7485)
Number of observations: 1412
Number of parameters estimated: 8
AIC: 8993.9, (AIC for lm: 9117)

While the coefficient estimates are identical, there are quite some differ-
ences in terms of the inference. First of all, there is no asymptotic variance
for any of the coefficients. Instead, significance is based on a Likelihood Ra-
tio test (LR). For the autoregressive coefficient, this is the LR test for the full
model. This shows the same value of 125.07 as with the eigenvalue method.
There is no inference for the constant term. For the regression coefficients,
the value reported in the column customarily reserved for the asymptotic
standard error is actually the log likelihood of a model where this variable
has been dropped from the specification. For example, for RD60, this value
is -4504.9. The next item, customarily reserved for the t-value, is the LR
test statistic from comparing the log likelihood of the unrestricted model
(with the variable) to that of the restricted model (without the variable).
Formally, LR = −2(LU − LR). In our example, the negative difference be-
tween -4488.967 and -4504.879 is 15.912, and twice this value (the LR
test statistic) is 31.824, the value listed in the third column next to RD60.
The fourth column shows the p-value for the LR test.

These individual log-likelihoods can also be extracted explicitly from the
fitted object, as the list item LLs, using the familiar $ notation to extract
an element from a list:

> lag60s$LLs
[[1]]
’log Lik.’ -4504.879 (df=7)
[[2]]
’log Lik.’ -4488.985 (df=7)
[[3]]
’log Lik.’ -4500.249 (df=7)
[[4]]
’log Lik.’ -4497.146 (df=7)
[[5]]
’log Lik.’ -4490.847 (df=7)

Other items of interest are the residuals, e.g., lag60$residuals, and the
predicted (fitted) values, e.g., lag60$fitted.values. Note that lagsarlm

96



uses a different approach from GeoDa to compute the predicted values. In
GeoDa the latter are obtained from the reduced form, as ŷ = (I−ρ̂W )−1Xβ̂,
whereas lagsarlm uses ŷ = ρ̂Wy+Xβ̂. See Section 24.4 of the GeoDa Work-
book for an in-depth discussion of this issue and some illustrations. See also
the lagsarlm help file for further technical details on its implementation.

7.4 ML Estimation of the Spatial Error Model

ML estimation of the spatial error model is similar to the lag procedure and
implemented in the errorsarlm( ) function. Again, the formula, data set
and a listw spatial weights object must be specified at a minimum. The
default estimation procedure is the eigenvalue decomposition.

To illustrate this, consider the estimation of the homicide specification
for 1990, using south90 as the data set, srkw as the weights matrix, and
the specification with HR90 as the dependent variable, and RD90 + PS90 +
MA90 + DV90 + UE90 as the explanatory variables.

> err90 <- errorsarlm(HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90,
+ data=south90,srkw)
> summary(err90)

Call:errorsarlm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90,
data = south90, listw = srkw)

Residuals:
Min 1Q Median 3Q Max

-18.17590 -3.50131 -0.63837 2.43642 41.70782

Type: error
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.693514 1.958045 3.4185 0.0006297
RD90 4.407396 0.237668 18.5443 < 2.2e-16
PS90 1.766328 0.225652 7.8276 4.885e-15
MA90 -0.016640 0.052990 -0.3140 0.7535090
DV90 0.499146 0.124912 3.9960 6.443e-05
UE90 -0.387841 0.078478 -4.9420 7.731e-07

Lambda: 0.29161 LR test value: 52.11 p-value: 5.2491e-13
Asymptotic standard error: 0.037275 z-value: 7.8231 p-value: 5.107e-15
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Wald statistic: 61.201 p-value: 5.107e-15

Log likelihood: -4471.317 for error model
ML residual variance (sigma squared): 32.407, (sigma: 5.6927)
Number of observations: 1412
Number of parameters estimated: 8
AIC: 8958.6, (AIC for lm: 9008.7)

The results are identical to those listed in Figure 25.6 of the GeoDa
Workbook, even though a different numerical optimization approach is used.
The results are similar to those obtained with OLS (MA remains insignifi-
cant). Again, when specifying the method Matrix the inference differs but
not in the same way as for the lag case.

For example, consider the results below:

> err90s <- errorsarlm(HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90,
+ data=south90,srkw,method="Matrix")
> summary(err90s)

Call:errorsarlm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90,
data = south90, listw = srkw, method = "Matrix")

Residuals:
Min 1Q Median 3Q Max

-18.17590 -3.50131 -0.63837 2.43642 41.70782

Type: error
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.693514 1.958045 3.4185 0.0006297
RD90 4.407397 0.237668 18.5443 < 2.2e-16
PS90 1.766328 0.225652 7.8277 4.885e-15
MA90 -0.016640 0.052990 -0.3140 0.7535090
DV90 0.499146 0.124912 3.9960 6.443e-05
UE90 -0.387841 0.078478 -4.9420 7.731e-07

Lambda: 0.29161 LR test value: 52.11 p-value: 5.2491e-13

Log likelihood: -4471.317 for error model
ML residual variance (sigma squared): 32.407, (sigma: 5.6927)
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Number of observations: 1412
Number of parameters estimated: 8
AIC: 8958.6, (AIC for lm: 9008.7)

There is no asymptotic error variance for the autoregressive coefficient.
As for the lag, a LR test is used instead. The inference for the regression
coefficients is the same as for the eigenvector approach. This is because,
unlike what holds for the lag model, the asymptotic variance matrix in the
error model is block diagonal between the spatial parameter and the other
parameters of the model. The asymptotic variance for the latter is obtained
by plugging the estimate for the spatial autoregressive coefficient into the
familiar FGLS expression. In the lag model, there is no such simple block
diagonal shape.

Specific components of the fitted model can be extracted in the usual
fashion. For example, residuals are obtained as err90$residuals and pre-
dicted values as err90$fitted.values. See the help file for details.

7.5 Spatial Durbin Model

An important specification test in the spatial error model is a test on the
so-called spatial common factor hypothesis. This exploits the property that
a spatial error model can also be specified in spatial lag form, with the
spatially lagged explanatory variables included, but with constraints on the
parameters (the common factor constraints). The spatial lag form of the
error model is also referred to as the spatial Durbin specification. In spdep,
this is implemented by specifying the mixed option for type in the spatial lag
estimation (the spatially lagged explanatory variables need not be specified).

To assess whether the common factor constraints are satisfied for the
spatial error model of HR90, we run the same specification as a lag model,
with the type="mixed" option.

> lag90durbin <- lagsarlm(HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90,
+ data=south90,srkw,type="mixed")
> summary(lag90durbin)

Call:lagsarlm(formula = HR90 ~ RD90 + PS90 + MA90 + DV90 + UE90,
data = south90, listw = srkw, type = "mixed")

Residuals:
Min 1Q Median 3Q Max
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-18.26433 -3.30003 -0.69833 2.43177 39.77795

Type: mixed
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.861374 2.571244 4.2242 2.398e-05
RD90 4.176400 0.283976 14.7069 < 2.2e-16
PS90 1.373438 0.258171 5.3199 1.038e-07
MA90 0.035280 0.059578 0.5922 0.5537373
DV90 0.561657 0.139475 4.0269 5.651e-05
UE90 -0.137848 0.093086 -1.4809 0.1386421
lag.RD90 -0.441362 0.431248 -1.0235 0.3060940
lag.PS90 0.536691 0.370724 1.4477 0.1477053
lag.MA90 -0.152049 0.090370 -1.6825 0.0924669
lag.DV90 -0.224587 0.201777 -1.1130 0.2656886
lag.UE90 -0.482028 0.127317 -3.7860 0.0001531

Rho: 0.2547 LR test value: 41.96 p-value: 9.318e-11
Asymptotic standard error: 0.037956 z-value: 6.7105 p-value: 1.9398e-11
Wald statistic: 45.031 p-value: 1.9398e-11

Log likelihood: -4453.823 for mixed model
ML residual variance (sigma squared): 31.747, (sigma: 5.6344)
Number of observations: 1412
Number of parameters estimated: 13
AIC: 8933.6, (AIC for lm: 8973.6)
LM test for residual autocorrelation
test value: 12.986 p-value: 0.00031377

The output lists the estimates, standard errors, etc. for each explanatory
variable as well as its spatially lagged counterpart (e.g., lag.RD90). Several
of the coefficient estimates for the latter are not significant. Note also how
the spatial autoregressive coefficient of 0.2547 is slightly different from the
value obtained with the pure error model (0.2916). Also, there is evidence
of remaining spatial error autocorrelation, as indicated by the signficant LM
test statistic.

The main purpose of this exercise is to test whether the product of
this spatial autoregressive coefficient with each of the regression coefficients
equals negative the coefficient of the matching spatially lagged explanatory
variable. There are a total of 5 such constraints, which gives the degrees of
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freedom for the test on the common factor constraints.
This is implemented through the LR.sarlm function, which allows a like-

lihood ratio test between two nested models (i.e., one must be found from
the other by setting coefficients equal to zero). In this case, the nested
models are the unconstrained spatial Durbin model (lag90durbin) and the
constrained spatial error model (err90). This yields:

> LR.sarlm(lag90durbin,err90)

Likelihood ratio for spatial linear models

data:
Likelihood ratio = 34.9882, df = 5, p-value = 1.513e-06
sample estimates:
Log likelihood of lag90durbin Log likelihood of err90

-4453.823 -4471.317

The constraints are strongly rejected. In other words, the spatial au-
toregressive error specification is internally inconsistent. This can be due
to a poor choice of the spatial weights, or to a misspecification of the error
process (e.g., when the true error process is not SAR). The upshot of this
evidence is that the model specification should be reconsidered.

7.6 Practice

Experiment with different spatial weights to obtain a more satisfactory spa-
tial regression model for HR90. Alternatively, explore the spatial regression
estimation in one of the sample data sets, e.g., replicating the police ex-
ample, or the Baltimore or Boston house price examples.
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Exercise 8

Discrete Spatial Heterogeneity

8.1 Objectives

While spdep does not contain specific functionality to address spatial het-
erogeneity, it is possible to get some useful results by manipulating the re-
gression format and extracting information from the fitted spatial regression
object. This exercise illustrates the analysis of discrete spatial heterogeneity
in the form of spatial analysis of variance (spatial ANOVA) and tests for
the presence of spatial regimes.

8.2 Preliminaries

As a running example, we will continue the analysis of homicide rates in US
counties, but now consider the whole country. Follow the instructions given
in Section 6.2 to create a data frame from the sample data set nat.shp,
selecting the variables FIPSNO, SOUTH, HR60, RD60, PS60, MA60, DV60 and
UE60. Turn this into the data frame nat60.

In addition, create a neighbor and listw object from the queen contiguity
file natqueen.gal using the read.gal and nb2listw functions. Call the
final listw object natq.

Make sure everything is correct by comparing your data summaries to
the results below:

> summary(nat60)
FIPSNO SOUTH HR60

Min. : 1001 Min. :0.0000 Min. : 0.000
1st Qu.:19037 1st Qu.:0.0000 1st Qu.: 0.000
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Median :29197 Median :0.0000 Median : 2.783
Mean :30592 Mean :0.4577 Mean : 4.504
3rd Qu.:45083 3rd Qu.:1.0000 3rd Qu.: 6.885
Max. :56045 Max. :1.0000 Max. :92.937
. . .

and

> summary(natq)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 3085
Number of nonzero links: 18168
Percentage nonzero weights: 0.1908960
Average number of links: 5.889141
Link number distribution:

1 2 3 4 5 6 7 8 9
24 36 91 281 620 1037 704
. . .

1 most connected region:
49037 with 14 links

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 3085 9517225 3085 1104.156 12568.36

8.3 Spatial ANOVA

Spatial analysis of variance can be implemented as a simple dummy variable
regression. In our example, HR90 is the dependent variable, with the dummy
variable SOUTH as the explanatory variable. The estimate of the dummy
indicates the difference between the regime SOUTH = 1 and the overall mean.

8.3.1 OLS Estimation

We first implement this using the standard lm function and create a regres-
sion object to test for spatial error autocorrelation.
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Before you start, make sure to attach the nat60 data frame. The results
show a highly significant effect of the South.

> attach(nat60)
> hr60an <- lm(HR60 ~ SOUTH)
> summary(hr60an)

Call:
lm(formula = HR60 ~ SOUTH)

Residuals:
Min 1Q Median 3Q Max

-7.292 -2.151 -1.052 1.467 85.645

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1510 0.1231 17.47 <2e-16 ***
SOUTH 5.1412 0.1820 28.25 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.036 on 3083 degrees of freedom
Multiple R-Squared: 0.2056,Adjusted R-squared: 0.2053
F-statistic: 797.9 on 1 and 3083 DF, p-value: < 2.2e-16

We next check the LM statistics for spatial autocorrelation:

> lm.LMtests(hr60an,natq,
+ test=c("LMerr","RLMerr","LMlag","RLMlag"))

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ SOUTH)
weights: natq
LMerr = 332.4194, df = 1, p-value < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:
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model: lm(formula = HR60 ~ SOUTH)
weights: natq
RLMerr = 13.1194, df = 1, p-value = 0.0002923

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ SOUTH)
weights: natq
LMlag = 359.7856, df = 1, p-value < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ SOUTH)
weights: natq
RLMlag = 40.4856, df = 1, p-value = 1.981e-10

The results show very strong evidence of spatial autocorrelation, with a
slight edge in favor of the lag alternative. We will estimate both and assess
the effect on the magnitude and significance of the coefficient of the SOUTH
dummy.

8.3.2 Spatial Dummy Variable Regression

For completeness sake, we check both lag and error alternatives. The spatial
lag version of the ANOVA model yields:

> hr60anlag <- lagsarlm(HR60 ~ SOUTH,data=nat60,
+ natq)
> summary(hr60anlag)

Call:lagsarlm(formula = HR60 ~ SOUTH, data = nat60, listw = natq)

Residuals:
Min 1Q Median 3Q Max

-12.99088 -2.11958 -0.93541 1.37336 86.54842

Type: lag
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
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(Intercept) 1.29761 0.12815 10.125 < 2.2e-16
SOUTH 3.16222 0.20923 15.114 < 2.2e-16

Rho: 0.38603 LR test value: 261.92 p-value: < 2.22e-16
Asymptotic standard error: 0.024275 z-value: 15.902 p-value: < 2.22e-16
Wald statistic: 252.88 p-value: < 2.22e-16

Log likelihood: -9232.926 for lag model
ML residual variance (sigma squared): 22.626, (sigma: 4.7566)
Number of observations: 3085
Number of parameters estimated: 4
AIC: 18474, (AIC for lm: 18734)
LM test for residual autocorrelation
test value: 151.76 p-value: < 2.22e-16

Compared to the OLS results, the dummy remains strongly significant,
even though its magnitude decreases considerably after the spatial lag filter
is implemented. A cursory look at the diagnostics shows that considerably
spatial autocorrelation remains, which is not surprising, given the simplicity
of the specification.

The spatial error version of the ANOVA model yields:

> hr60anerr <- errorsarlm(HR60 ~ SOUTH,data=nat60,
+ natq)
> summary(hr60anerr)

Call:errorsarlm(formula = HR60 ~ SOUTH, data = nat60, listw = natq)

Residuals:
Min 1Q Median 3Q Max

-12.75378 -2.15718 -0.95972 1.42182 86.62697

Type: error
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.24729 0.18495 12.151 < 2.2e-16
SOUTH 4.85680 0.26892 18.061 < 2.2e-16

Lambda: 0.37676 LR test value: 241.96 p-value: < 2.22e-16
Asymptotic standard error: 0.024649 z-value: 15.285 p-value: < 2.22e-16
Wald statistic: 233.62 p-value: < 2.22e-16
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Log likelihood: -9242.908 for error model
ML residual variance (sigma squared): 22.806, (sigma: 4.7756)
Number of observations: 3085
Number of parameters estimated: 4
AIC: 18494, (AIC for lm: 18734)

Here again, incorporating spatial effects does not substantially change
the evidence. The dummy variable remains highly significant. Compared to
the OLS results, its value is slightly lower, but the standard error is larger.

The fit of the two spatial models can be compared by means of the
maximized log likelihood. For the error model this is -9242.9 but for the
lag model it is -9232.9, confirming its superiority. However, both models
leave a lot unexplained and should only be used in an exploratory phase of
possible spatial heterogeneity.

8.4 Spatial Regimes

Spatial regime regressions allow the model coefficients to vary between dis-
crete spatial subsets of the data. We will implement this by taking advantage
of the interaction feature of the formula in R (indicated by the : symbol
between two sets of variables). Specifically, we will create a dummy variable
for each regime (i.e., taking a value of one for observations in the regime and
zero for all others) and then interact each explanatory variable with each
dummy. A Chow test and its extension to spatial regressions (spatial Chow
test) forms the basis for assessing the significance of the regimes.

8.4.1 Preliminaries

We create two new variables and add them to the nat60 data frame. First,
we construct the complement of the SOUTH dummy, NOSOUTH. Next, we con-
struct a vector of ones of the same length as the other variables. This is
easily done by adding SOUTH and NOSOUTH without having to worry about
specifying the length. We call the new data frame nat60a.

> NOSOUTH = 1 - SOUTH
> ONE = SOUTH + NOSOUTH
> nat60a <- cbind(nat60,ONE,NOSOUTH)
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Check that everything went fine using a summary. Note how the mean of
SOUTH is 0.4577 and the mean of NOSOUTH is 0.5423. To have easy access
to the variables, attach(nat60a) (detach other data sets if necessary).

8.4.2 Spatial Regimes in OLS

We will first run a base regression for the whole nation, in which the coeffi-
cients are kept fixed and without a SOUTH dummy. This will be referred to
as the constrained model (since the coefficients are constrained to be equal
across regimes). The corresponding output is:

> nat60ols <- lm(HR60 ~ RD60 + PS60 + MA60 +
+ DV60 + UE60)
> summary(nat60ols)

Call:
lm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60)

Residuals:
Min 1Q Median 3Q Max

-14.999 -2.427 -0.821 1.434 90.954

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.51667 0.61064 17.222 < 2e-16 ***
RD60 2.69490 0.09653 27.919 < 2e-16 ***
PS60 0.60360 0.09141 6.603 4.72e-11 ***
MA60 -0.27212 0.01935 -14.063 < 2e-16 ***
DV60 1.29591 0.09599 13.501 < 2e-16 ***
UE60 -0.10610 0.03565 -2.976 0.00294 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.84 on 3079 degrees of freedom
Multiple R-Squared: 0.2673,Adjusted R-squared: 0.2661
F-statistic: 224.7 on 5 and 3079 DF, p-value: < 2.2e-16

To obtain the unconstrained regression, we need to drop the default
constant from the formula in order to make sure that a different intercept
is estimated for each regime. This is done by specifying 0 in the formula for
the regression specification. We also need to interact each of the explanatory

108



variables (including the constant, hence the need for ONE) with the SOUTH
and NOSOUTH dummies.

We get the results from the familiar lm function with the customized
formula, as shown:

> nat60rega <- lm(HR60 ~ 0 + (ONE + RD60 + PS60 +
+ MA60 + DV60 + UE60):(SOUTH + NOSOUTH))
> summary(nat60rega)

Call:
lm(formula = HR60 ~ 0 + (ONE + RD60 + PS60 + MA60 +

DV60 + UE60):(SOUTH + NOSOUTH))

Residuals:
Min 1Q Median 3Q Max

-13.5265 -2.1820 -0.6467 1.3390 88.4821

Coefficients:
Estimate Std. Error t value Pr(>|t|)

ONE:SOUTH 13.21547 0.87183 15.158 < 2e-16 ***
ONE:NOSOUTH 6.39963 0.99955 6.403 1.76e-10 ***
RD60:SOUTH 1.76448 0.15369 11.481 < 2e-16 ***
RD60:NOSOUTH 1.85730 0.23653 7.852 5.60e-15 ***
PS60:SOUTH 0.29930 0.16611 1.802 0.07166 .
PS60:NOSOUTH 0.37748 0.11730 3.218 0.00130 **
MA60:SOUTH -0.27521 0.02951 -9.326 < 2e-16 ***
MA60:NOSOUTH -0.19537 0.02978 -6.560 6.27e-11 ***
DV60:SOUTH 1.17945 0.18879 6.247 4.75e-10 ***
DV60:NOSOUTH 1.11883 0.11463 9.761 < 2e-16 ***
UE60:SOUTH -0.29186 0.05518 -5.289 1.31e-07 ***
UE60:NOSOUTH 0.09277 0.04554 2.037 0.04173 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.721 on 3073 degrees of freedom
Multiple R-Squared: 0.5746,Adjusted R-squared: 0.5729
F-statistic: 345.9 on 12 and 3073 DF, p-value: < 2.2e-16

Note that the R-Squared may not be computed correctly when the inter-
cept is excluded in this fashion, but we can ignore that for now. The results
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show some differences in significance between regimes for some of the coeffi-
cients, such as PS60 (not significant in SOUTH but significant in NOSOUTH) and
UE60 (strongly significant and negative in SOUTH and positive but marginally
significant in NOSOUTH).

8.4.3 Chow Test

A straightforward test on the constraint that the coefficients are equal across
regimes is the Chow test contained in any standard econometrics test:

C =
e′ReR − e′UeU

k
/
e′UeU
N − 2k

∼ F (k,N − 2k), (8.1)

where eR is the vector of residuals from the constrained regression (con-
stant coefficients) and eU is the vector of residuals from the unconstrained
regression (regime coefficients).

We extract the residuals from the regression object by means of the
residuals method applied to the object.

> er <- residuals(nat60ols)

We also extract the degrees of freedom in a similar way.

> k <- nat60ols$rank
> n2k <- nat60ols$df.residual - k

The Chow test can be computed in a short function, shown below:

chow.test <- function(rest,unrest)
{

er <- residuals(rest)
eu <- residuals(unrest)
er2 <- sum(er^2)
eu2 <- sum(eu^2)
k <- rest$rank
n2k <- rest$df.residual - k
c <- ((er2 - eu2)/k) / (eu2 / n2k)
pc <- pf(c,k,n2k,lower.tail=FALSE)
list(c,pc,k,n2k)

}

This function is contained in a file chow.test.R, which needs to be sourced
to bring it into your workspace (make sure the file is in your working direc-
tory). Alternatively, you can type it in at the command line.
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The function simply extracts the respective residual vectors from the
regression objects, as well as the degrees of freedom and computes the simple
statistic. Inference is based on the F distribution using the pf function. The
results are passed back as a list containing the test statistic, p value and
two degrees of freedom.

In our example, this gives:

> source("chow.test.R")
> chow.test(nat60ols,nat60rega)
[[1]]
[1] 27.11882
[[2]]
[1] 1.141437e-31
[[3]]
[1] 6
[[4]]
[1] 3073

The value of the test statistic is 27.12, which is highly significant. Hence,
there is strong evidence that the model coefficients indeed are not constant
across regimes, indicating spatial heterogeneity.

8.4.4 Spatial Regimes in Spatial Regression

The residuals of the spatial regime regression continue to show strong evi-
dence of spatial autocorrelation. Both LMerr and LMlag statistics are highly
significant, as are their robust forms, with a slight edge in favor of the lag
alternative.

> lm.LMtests(nat60rega,natq,
+ test=c("LMerr","RLMerr","LMlag","RLMlag"))

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ 0 + (ONE + RD60 + PS60 + MA60
+ DV60 + UE60):(SOUTH + NOSOUTH))
weights: natq
LMerr = 97.6755, df = 1, p-value < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence
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data:
model: lm(formula = HR60 ~ 0 + (ONE + RD60 + PS60 + MA60
+ DV60 + UE60):(SOUTH + NOSOUTH))
weights: natq
RLMerr = 9.8075, df = 1, p-value = 0.001738

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ 0 + (ONE + RD60 + PS60 + MA60
+ DV60 + UE60):(SOUTH + NOSOUTH))
weights: natq
LMlag = 129.1925, df = 1, p-value < 2.2e-16

Lagrange multiplier diagnostics for spatial dependence

data:
model: lm(formula = HR60 ~ 0 + (ONE + RD60 + PS60 + MA60
+ DV60 + UE60):(SOUTH + NOSOUTH))
weights: natq
RLMlag = 41.3245, df = 1, p-value = 1.289e-10

Spatial regimes can be incorporated in spatial lag and spatial error mod-
els in the same way as for OLS, by means of the interaction terms in the
model formula.

For the spatial lag model, this gives:

> hr60rlag <- lagsarlm(HR60 ~ 0 + (ONE + RD60 + PS60 +
+ MA60 + DV60 + UE60):(SOUTH + NOSOUTH),data=nat60a,
+ natq)
> summary(hr60rlag)

Call:lagsarlm(formula = HR60 ~ 0 + (ONE + RD60 + PS60 +
MA60 + DV60 + UE60):(SOUTH + NOSOUTH),
data = nat60a, listw = natq)

Residuals:
Min 1Q Median 3Q Max

-13.41352 -2.11313 -0.62028 1.33659 88.38962
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Type: lag
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
ONE:SOUTH 9.739325 0.895945 10.8704 < 2.2e-16
ONE:NOSOUTH 5.273614 0.982158 5.3694 7.899e-08
RD60:SOUTH 1.420458 0.153772 9.2374 < 2.2e-16
RD60:NOSOUTH 1.625286 0.231632 7.0167 2.272e-12
PS60:SOUTH 0.208484 0.162155 1.2857 0.198544
PS60:NOSOUTH 0.385196 0.114367 3.3681 0.000757
MA60:SOUTH -0.213140 0.029087 -7.3277 2.340e-13
MA60:NOSOUTH -0.165157 0.029204 -5.6553 1.556e-08
DV60:SOUTH 0.979970 0.184224 5.3195 1.041e-07
DV60:NOSOUTH 0.898503 0.112754 7.9687 1.554e-15
UE60:SOUTH -0.210014 0.053885 -3.8974 9.722e-05
UE60:NOSOUTH 0.083777 0.044455 1.8845 0.059494

Rho: 0.25961 LR test value: 106.05 p-value: < 2.22e-16
Asymptotic standard error: 0.02568 z-value: 10.11 p-value: < 2.22e-16
Wald statistic: 102.21 p-value: < 2.22e-16

Log likelihood: -9106.562 for lag model
ML residual variance (sigma squared): 21.189, (sigma: 4.6032)
Number of observations: 3085
Number of parameters estimated: 14
AIC: 18241, (AIC for lm: 18345)
LM test for residual autocorrelation
test value: 38.109 p-value: 6.6914e-10

Here again, there is evidence of a difference between regimes for the
coefficients of PS60 and UE60. In order to assess this more rigorously, we
also need the results for the spatial lag model of the constrained specification.
The corresponding result is:

> hr60lag <- lagsarlm(HR60 ~ RD60 + PS60 + MA60 +
+ DV60 + UE60,data=nat60a,natq)
> summary(hr60lag)

Call:lagsarlm(formula = HR60 ~ RD60 + PS60 + MA60 + DV60 + UE60,
data = nat60a, listw = natq)

Residuals:

113



Min 1Q Median 3Q Max
-13.89718 -2.17000 -0.74723 1.37653 90.09303

Type: lag
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.048613 0.629963 11.1889 < 2.2e-16
RD60 1.912544 0.106597 17.9419 < 2.2e-16
PS60 0.456590 0.088178 5.1781 2.242e-07
MA60 -0.190804 0.019269 -9.9023 < 2.2e-16
DV60 0.942877 0.093493 10.0850 < 2.2e-16
UE60 -0.052096 0.034187 -1.5239 0.1275

Rho: 0.32721 LR test value: 192.26 p-value: < 2.22e-16
Asymptotic standard error: 0.024022 z-value: 13.621 p-value: < 2.22e-16
Wald statistic: 185.53 p-value: < 2.22e-16

Log likelihood: -9143.04 for lag model
ML residual variance (sigma squared): 21.528, (sigma: 4.6399)
Number of observations: 3085
Number of parameters estimated: 8
AIC: 18302, (AIC for lm: 18492)
LM test for residual autocorrelation
test value: 50.95 p-value: 9.4769e-13

8.4.5 Spatial Chow Test

When the regression error terms are spatially autocorrelated, the simple
form of the Chow test shown in (8.1) is no longer valid. A corrected version
of the test is referred to as a spatial Chow test (see Anselin 1988, pp. 123–
124). With the results of both the constrained and unconstrained models at
hand, this can be implemented as a LR test, since the constrained model is
nested within the unconstrained one.

This can be readily implemented in a small function:

spatialchow.test <- function(rest,unrest)
{

lrest <- rest$LL
lunrest <- unrest$LL
k <- rest$parameters - 2
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spchow <- - 2.0 * (lrest - lunrest)
pchow <- pchisq(spchow,k,lower.tail=FALSE)
list(spchow,pchow,k)

}

The function takes the spatial regression objects and extracts the maxi-
mized log-likelihood as the $LL item. The degrees of freedom are obtained
as the number of parameters in the constrained model less two (for the au-
toregressive parameter and the error variance), using $parameters. The
computation of the LR test is straightforward. Significance is assessed from
the Chi-squared distribution. The results are returned as a list.

This function is contained in the file spatialchow.test.R. Source this
file to incorporate it into your workspace and invoke the test by passing the
two spatial lag regression objects to it: hr60lag for the restricted model and
hr60rlag for the unrestricted model. The result shows a strong rejection of
the null hypothesis, suggesting significantly different coefficients in each of
the regimes, even after correcting for the spatial lag.

> source("spatialchow.test.R")
> spatialchow.test(hr60lag,hr60rlag)
[[1]]

[,1]
[1,] 72.95666
[[2]]

[,1]
[1,] 1.010420e-13
[[3]]
[1] 6

The approach for a spatial error model is similar, by passing the ap-
propriate constrained and unconstrained models to the spatialchow.test
function.

8.5 Practice

To practice, assess the spatial heterogeneity for other years of the US homi-
cide data set, using a spatial Chow test for both lag and error specifications.
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Exercise 9

Continuous Spatial
Heterogeneity

9.1 Objectives

We continue the analysis of spatial heterogeneity in two forms: spatial ex-
pansion and geographically weighted regression (GWR). These both yield
individual coefficient estimates for each location. This exercise illustrates
how you can manipulate the regression formula to implement spatial expan-
sion and introduces the basic GWR approach, highlighting the sensitivity
of the results to the choice of bandwidth and kernel function. We will map
the location-specific coefficient estimates in GeoDa and ArcMap.

9.2 Preliminaries

For the spatial expansion example, we will use the built-in columbus data
set to keep matters simple. Make sure you have the spdep library loaded.
We won’t actually use its functionality, but we need it for easy access to the
Columbus sample data.

For GWR, we will use the package spgwr:1

> library(spgwr)

1There is also a specialized software package GWR 3.x, distributed by Professor Stewart
Fotheringham at the National Centre for Geocomputation of the National University of
Ireland. It can be obtained from http://ncg.nuim.ie/ncg/GWR/software.htm. For any
in-depth analysis using GWR, the use of this more comprehensive software package is
recommended. The spgwr package currently only replicates a small subset of its function-
ality.
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If you want to make maps of the individual coefficient estimates, make
sure you have GeoDa or ArcMap handy, with the columbus.shp shape file.

9.3 Spatial Expansion Method

As the first example of modeling continuous spatial heterogeneity, we con-
sider Casetti’s expansion method. This is a special case of a model with
varying coefficients, where the variation is driven by an expansion equation.

In the simplest example, the expansion equation is a linear trend surface.
This yields a final equation that contains the original explanatory variables,
as well as interaction terms with the X and Y coordinates. A straightforward
calculation yields individual coefficient values for each location, which can
then be mapped and further analyzed.

A common problem in the implementation of the spatial expansion method
is the high degree of multicollinearity that results from the interaction terms.
In practice, this requires the use of some adjustments, such as replacing the
original interaction terms by their principal components. Such adjustments
are outside the current scope and we will ignore the potential multicollinear-
ity.

We will use the built-in columbus data set to illustrate this procedure.
Start by loading the data set and attaching it.

> data(columbus)
> attach(columbus)

We will run the standard regression example, with CRIME as the dependent
variable and INC and HOVAL as the explanatory variables. The expansion
will consist of a linear trend in the coordinates X and Y.

To create the proper interaction terms, we use the cross form of the
formula (symbolized by *). The final regression is then as shown.

> colex <- lm(CRIME ~ (INC + HOVAL)*(X + Y))
> summary(colex)

Call:
lm(formula = CRIME ~ (INC + HOVAL) * (X + Y))

Residuals:
Min 1Q Median 3Q Max

-18.5556 -7.6351 -0.6181 7.8363 30.1948
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 108.97559 69.36676 1.571 0.1241
INC -5.82949 3.84408 -1.516 0.1373
HOVAL 0.27337 0.82049 0.333 0.7407
X -0.76287 1.13692 -0.671 0.5061
Y -0.26332 1.21420 -0.217 0.8294
INC:X -0.01854 0.05396 -0.344 0.7329
INC:Y 0.13949 0.08004 1.743 0.0891 .
HOVAL:X 0.03159 0.01549 2.040 0.0480 *
HOVAL:Y -0.05034 0.02196 -2.293 0.0272 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 11.04 on 40 degrees of freedom
Multiple R-Squared: 0.6375,Adjusted R-squared: 0.5649
F-statistic: 8.791 on 8 and 40 DF, p-value: 7.663e-07

Note how very few coefficients are shown to be significant, even though
the R-squared is more than acceptable. This is a typical symptom of high
multicollinearity.

For our purposes, we will ignore this potential problem and compute
individual coefficients for HOVAL for each location. This is accomplished
by extracting the relevant coefficients from the regression object using the
$coefficients item.

> b <- colex$coefficients
> b[3]

HOVAL
0.2733714
> b[8]

HOVAL:X
0.03159375
> b[9]

HOVAL:Y
-0.05034417

The individual coefficients are obtained as;

> bihoval <- b[3] + b[8] * X + b[9] * Y
> bihoval
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Figure 9.1: Join tables dialog in GeoDa

[1] -0.71945869 -0.73484522 -0.54173838
. . .
[49] 0.36488625
> summary(bihoval)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.7348 -0.3418 -0.1479 -0.1096 0.1362 0.6105

We see that the varying coefficients range from -0.7348 to 0.6105 (com-
pare this to an estimate of -0.2739 in the fixed coefficient model).

We can now create a data frame that can be written out to a dbf file, to
be joined with the dbf file of the columbus shape file for mapping.

> bi <- data.frame(POLYID,bihoval)
> write.dbf(bi,"bihoval.dbf")

In GeoDa, load the columbus.shp shape file and select the table. Right
click and choose join table. In the dialog, enter the name of the dbf file
bihoval.dbf, the Key as POLYID, and the variable to be joined as BIHOVAL,
as illustrated in Figure 9.1 .
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Figure 9.2: Map of spatially expanded coefficients for HOVAL

Now, the new variable is available to all the analyses and visualization
methods in GeoDa. For example, we can create a simple quantile map using
6 quantiles to show the gradual change of the coefficients across the city
neighborhoods, with the low values in the upper left, and the highest values
in the lower right, as in Figure 9.2. Note that the spatial expansion does
not need to be limited to the use of X and Y coordinates, but can be applied
to any set of variables that may underlie the spatial heterogeneity in the
model.

9.4 GWR

9.4.1 Basics

Make sure the spgwr library is active and the columbus data set attached.
We first explore the basics of the gwr function. This function creates an
object that contains a data frame with the individual coefficient estimates
for each variable and each location. The arguments to this function are a
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formula (for the model specification), a data set, a matrix with the X, Y
coordinates of the locations (or polygon centroids) and a bandwidth. The
default kernel function is the Gaussian.

The bandwidth is hard to specify a priori and the preferred approach is
to carry out a cross-validation, minimizing the root mean square prediction
error. For now, we’ll try three values of 20, 3 and 2. As the bandwidth
widens, the surface of estimated coefficients becomes smoother.

With the familiar CRIME regression, the coordinates as the X and Y vari-
ables from the built in data set and the bandwidth of 20, this yields:

> colg1 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y),bandwidth=20)
> colg1
Call:
gwr(formula = CRIME ~ INC + HOVAL, data = columbus,

coords = cbind(X, Y), bandwidth = 20)
Kernel function: gwr.gauss
Fixed bandwidth: 20
Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global
X.Intercept. 68.0700 69.0300 69.4500 69.8000 71.1700 68.6190
INC -1.7200 -1.6590 -1.6210 -1.5600 -1.4510 -1.5973
HOVAL -0.3407 -0.3078 -0.2789 -0.2454 -0.1903 -0.2739

The print command gives a summary of the estimated coefficients (note
that summary is not useful in this context), listing the basic parameters (ker-
nel and bandwidth) and providing descriptive statistics for each of the esti-
mated coefficients. For example, the estimates for HOVAL range from -0.3407
to -0.1903 and are not that far from the global estimate of -0.2739. The
main reason for this is the large bandwidth, which does not allow for much
variability. Compare this to the range obtained for the spatial expansion
method of -0.7348 to 0.6105.

For the two other bandwidths, we get the following results:

> colg2 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y),bandwidth=3)
> colg2
Call:
gwr(formula = CRIME ~ INC + HOVAL, data = columbus,

coords = cbind(X, Y), bandwidth = 3)
Kernel function: gwr.gauss
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Fixed bandwidth: 3
Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global
X.Intercept. 23.03000 53.33000 62.96000 68.72000 81.39000 68.6190
INC -3.22200 -1.88300 -0.75950 -0.34360 1.30700 -1.5973
HOVAL -1.07400 -0.38630 -0.12820 0.04305 0.85320 -0.2739
> colg3 <- gwr(CRIME ~ INC + HOVAL, data=columbus,
+ coords=cbind(X,Y),bandwidth=2)
> colg3
Call:
gwr(formula = CRIME ~ INC + HOVAL, data = columbus,

coords = cbind(X, Y), bandwidth = 2)
Kernel function: gwr.gauss
Fixed bandwidth: 2
Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global
X.Intercept. 20.87000 43.06000 65.07000 71.34000 88.53000 68.6190
INC -6.01900 -1.74400 -0.71910 -0.03815 3.85400 -1.5973
HOVAL -3.47700 -0.46420 -0.20710 0.04728 1.40400 -0.2739

The bandwidth of 3 yields a similar range to the expansion method, while
the bandwidth of 2 results in a very wide range. The three distributions can
be compared to that of the expansion method by means of a box plot.

To extract the vector of coefficients we need to access the SDF attribute of
the gwr class. This is a data frame containing the coordinates, coefficients
and a measure of error. For example, for the second bandwidth (2), this
looks like (the R2 and gwr.e columns have been dropped):

> colg3$SDF
coordinates sum.w X.Intercept. INC HOVAL ...

1 (38.8, 44.07) 1.146372 46.18933 -0.70880055 -0.207112745 ...
2 (35.62, 42.38) 1.425847 43.06483 -0.66509539 -0.222184163 ...
3 (39.82, 41.18) 1.269489 53.52575 -0.97462747 -0.248571427 ...
4 (36.5, 40.52) 1.918875 58.23655 -0.22800553 -0.678264390 ...
...
49 (42.67, 24.96) 1.883877 74.88421 3.85392142 -3.477123284 ...

A vector with values for an individual coefficient is extracted using the
familiar $ notation for a list item, e.g.:

> hovg3 <- colg2$SDF$HOVAL
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Figure 9.3: Box plots for different bandwidths in GWR

> summary(hovg3)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.07400 -0.38630 -0.12820 -0.14260 0.04305 0.85320

We create vectors for the other two bandwidths in a similar way:

> hovg20 <- colg1$SDF$HOVAL
> summary(hovg20)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.3407 -0.3078 -0.2789 -0.2768 -0.2454 -0.1903
> hovg2 <- colg3$SDF$HOVAL
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> summary(hovg2)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.47700 -0.46420 -0.20710 -0.25020 0.04728 1.40400

We can now put box plots for the three coefficient vectors side by side.

> boxplot(bihoval,hovg20,hovg3,hovg2,
+ names=c("Expansion","bw=20","bw=3","bw=2"))

This yields Figure 9.3. Note how the distribution for bandwidth 20 is
concentrated around the median value (a very smooth surface), whereas the
distribution for bandwidth 2 shows several outliers. The distribution for the
linear expansion methods is similar in range to that for a bandwidth of 3,
but the median is lower.

Just as for the expansion method coefficients, we can group the vec-
tors for GWR into a data frame, export it to a dbf file to join with the
columbus.shp shape file.

> colgwr <- data.frame(POLYID,hovg20,hovg3,hovg2)
> write.dbf(colgwr,"colgwr.dbf")

We can then map these, say in ArcMap, as illustrated in Figures 9.4 and
9.5.2 Here, we show a choropleth map using natural breaks with 8 categories.
This clearly illustrates the smoothing effect of the larger bandwidth.

9.4.2 Selecting the Optimal Bandwidth

So far, the bandwidth we specified for the gwr procedure was purely ad hoc.
spgwr implements two methods to select an optimal bandwidth. The most
commonly used is cross validation, minimizing the mean squared prediction
error when each observation is left out in turn. A second method is based on
the minimization of the Akaike Information Criterion (AIC) (for technical
details, see Fotheringham et al. 2002, pp. 59–62).

The optimal bandwidth is returned by the gwr.sel function, for a given
formula, data set, coordinate matrix and kernel (the default is the Gaussian
kernel, gwr.gauss). The default method is cross-validation (method="cv").
In order to use the AIC criterion, the method argument must be set explic-
itly, as method="aic".

2GeoDa is less appropriate for this purpose, since in the current version the join function
only allows one additional variable to be added. To add more variables, use Excel to join
and save as dbf before loading the shape file into GeoDa. Alternatively, one could use the
mapping capabilities built into the sp package when the data set is a spatial data frame.
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Legend
GWR Coefficients
HOVG20

-0.340749 - -0.326625

-0.326624 - -0.313555

-0.313554 - -0.304109

-0.304108 - -0.288720

-0.288719 - -0.269446

-0.269445 - -0.250435

-0.250434 - -0.221443

-0.221442 - -0.190298

Figure 9.4: GWR coefficients for HOVAL, bandwidth=20

This suggests a two step procedure to implement GWR: first, run gwr.sel
to obtain the bandwidth, next use this value in a final run of gwr. In our
example, with cross validation first, this yields:

> bw1 <- gwr.sel(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y))
Bandwidth: 12.65221 CV score: 12.25277
Bandwidth: 20.45127 CV score: 12.32858
Bandwidth: 7.83213 CV score: 12.22244
Bandwidth: 4.853154 CV score: 11.7606
Bandwidth: 3.012046 CV score: 11.15676
Bandwidth: 1.874179 CV score: 14.61981
Bandwidth: 3.715287 CV score: 11.24019
Bandwidth: 3.041249 CV score: 11.14678
Bandwidth: 3.276828 CV score: 11.12378
Bandwidth: 3.444304 CV score: 11.15169
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Legend
GWR Coefficients
BW=2

-3.477123 - -2.299294

-2.299293 - -0.892349

-0.892348 - -0.464233

-0.464232 - -0.191527

-0.191526 - 0.072892

0.072893 - 0.426213

0.426214 - 0.885093

0.885094 - 1.403766

Figure 9.5: GWR coefficients for HOVAL, bandwidth=2

Bandwidth: 3.233495 CV score: 11.12159
Bandwidth: 3.22236 CV score: 11.12143
Bandwidth: 3.216871 CV score: 11.12141
Bandwidth: 3.217402 CV score: 11.12141
Bandwidth: 3.217443 CV score: 11.12141
Bandwidth: 3.217484 CV score: 11.12141
Bandwidth: 3.217443 CV score: 11.12141
> bw1
[1] 3.217443

The second step follows as:

> colg4 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y),bandwidth=bw1)
> colg4
Call:
gwr(formula = CRIME ~ INC + HOVAL, data = columbus,
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coords = cbind(X, Y), bandwidth = bw1)
Kernel function: gwr.gauss
Fixed bandwidth: 3.217443
Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global
X.Intercept. 23.23000 54.12000 63.90000 68.76000 80.90000 68.6190
INC -3.13100 -1.91300 -0.98440 -0.36860 1.29100 -1.5973
HOVAL -1.05300 -0.37670 -0.09739 0.03004 0.79460 -0.2739

To use the AIC criterion, we include the method argument explicitly in
the call to gwr.sel:

> bw2 <- gwr.sel(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y),method="aic")
Bandwidth: 12.65221 AIC: 382.8966
Bandwidth: 20.45127 AIC: 383.3532
Bandwidth: 7.83213 AIC: 382.1
Bandwidth: 4.853154 AIC: 381.4758
Bandwidth: 3.012046 AIC: 412.4025
Bandwidth: 5.991021 AIC: 380.7834
Bandwidth: 6.106824 AIC: 380.8622
Bandwidth: 5.718077 AIC: 380.6517
Bandwidth: 5.387706 AIC: 380.6667
Bandwidth: 5.578766 AIC: 380.6282
Bandwidth: 5.573107 AIC: 380.6281
Bandwidth: 5.563802 AIC: 380.628
Bandwidth: 5.564886 AIC: 380.628
Bandwidth: 5.564926 AIC: 380.628
Bandwidth: 5.564967 AIC: 380.628
Bandwidth: 5.564926 AIC: 380.628
> colg4 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y),bandwidth=bw2)
> colg4
Call:
gwr(formula = CRIME ~ INC + HOVAL, data = columbus,

coords = cbind(X, Y), bandwidth = bw2)
Kernel function: gwr.gauss
Fixed bandwidth: 5.564926
Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global
X.Intercept. 30.0400 62.2700 69.5000 70.9200 75.3900 68.6190

127



INC -2.5810 -2.0010 -1.6170 -0.8033 -0.2798 -1.5973
HOVAL -0.8032 -0.3798 -0.1042 -0.0458 0.2542 -0.2739

Note how the AIC criterion results in a much smoother parameter map
than the one obtained with cross validation. There is little evidence as to
which is superior since they optimize different objective functions. Since our
use of GWR is primarily as a diagnostic for spatial heterogeneity, a careful
sensitivity analysis is recommended in any case.

As an exercise, compare the distribution of the HOVAL (or other) coeffi-
cient between the two optimal bandwidths and to its counterpart obtained
with the spatial expansion method in a box plot and choropleth map.

9.4.3 Selecting a Kernel Function

A second important practical aspect of the use of GWR is the selection of the
kernel function that is at the basis of the computation of the local estimates.
This is carried out by means of the gweight argument to the gwr.sel and
gwr functions. So far, we have used the Gaussian kernel, but spgwr also
implements a bisquare kernel. In contrast to the Gaussian kernel, which has
an infinite range (the bandwidth is not an absolute cut off), the bisquare
kernel sets all values beyond the bandwidth to zero. While the choice of a
kernel function should not be arbitrary, in the literature the emphasis is on
the sensitivity of the results to the choice of a bandwidth, rather than the
kernel function.

With the cross-validation approach an optimal bandwidth of 33 is se-
lected, which is much larger than for the Gaussian kernel. The resulting
GWR estimates for HOVAL are roughly comparable to the ones obtained
with a bandwidth of 20 for the Gaussian kernel.

> bwbs1 <- gwr.sel(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y),gweight=gwr.bisquare)
Bandwidth: 12.65221 CV score: 12.92097
Bandwidth: 20.45127 CV score: 12.41531
Bandwidth: 25.27136 CV score: 12.37858
Bandwidth: 23.70165 CV score: 12.38804
Bandwidth: 28.25033 CV score: 12.36507
Bandwidth: 30.09144 CV score: 12.36080
Bandwidth: 31.69725 CV score: 12.35831
Bandwidth: 31.08388 CV score: 12.35917
Bandwidth: 32.22175 CV score: 12.35763
Bandwidth: 32.54591 CV score: 12.35724
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Bandwidth: 32.74625 CV score: 12.35701
Bandwidth: 32.87007 CV score: 12.35687
Bandwidth: 32.94660 CV score: 12.35678
Bandwidth: 32.99389 CV score: 12.35673
Bandwidth: 33.02312 CV score: 12.35670
Bandwidth: 33.04119 CV score: 12.35668
Bandwidth: 33.05235 CV score: 12.35666
Bandwidth: 33.05925 CV score: 12.35666
Bandwidth: 33.06351 CV score: 12.35665
Bandwidth: 33.06615 CV score: 12.35665
Bandwidth: 33.06778 CV score: 12.35665
Bandwidth: 33.06879 CV score: 12.35664
Bandwidth: 33.06941 CV score: 12.35664
Bandwidth: 33.06979 CV score: 12.35664
Bandwidth: 33.07003 CV score: 12.35664
Bandwidth: 33.07018 CV score: 12.35664
Bandwidth: 33.07027 CV score: 12.35664
Bandwidth: 33.07032 CV score: 12.35664
Bandwidth: 33.07037 CV score: 12.35664
Bandwidth: 33.07037 CV score: 12.35664
> colg5 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y),gweight=gwr.bisquare,
+ bandwidth=bwbs1)
> colg5
Call:
gwr(formula = CRIME ~ INC + HOVAL, data = columbus,

coords = cbind(X, Y), bandwidth = bwbs1,
gweight = gwr.bisquare)

Kernel function: gwr.bisquare
Fixed bandwidth: 33.07037
Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global
X.Intercept. 68.3100 68.9600 69.2600 69.5700 71.6400 68.6190
INC -1.7270 -1.6480 -1.6140 -1.5690 -1.4680 -1.5973
HOVAL -0.3331 -0.3052 -0.2806 -0.2535 -0.1883 -0.2739

The AIC criterion yields a much smaller optimal bandwidth of 11.

> bwbs2 <- gwr.sel(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y),gweight=gwr.bisquare,method="aic")
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Bandwidth: 12.65221 AIC: 382.7242
Bandwidth: 20.45127 AIC: 384.3786
Bandwidth: 7.83213 AIC: 386.7498
Bandwidth: 15.27372 AIC: 384.0654
Bandwidth: 10.81111 AIC: 381.6533
Bandwidth: 9.673238 AIC: 383.0491
Bandwidth: 11.25258 AIC: 381.6384
Bandwidth: 11.07023 AIC: 381.6049
Bandwidth: 11.05193 AIC: 381.6044
Bandwidth: 11.04548 AIC: 381.6044
Bandwidth: 11.04647 AIC: 381.6044
Bandwidth: 11.04651 AIC: 381.6044
Bandwidth: 11.04655 AIC: 381.6044
Bandwidth: 11.04651 AIC: 381.6044
> colg6 <- gwr(CRIME ~ INC + HOVAL,data=columbus,
+ coords=cbind(X,Y),gweight=gwr.bisquare,
+ bandwidth=bwbs2)
> colg6
Call:
gwr(formula = CRIME ~ INC + HOVAL, data = columbus,

coords = cbind(X, Y), bandwidth = bwbs2,
gweight = gwr.bisquare)

Kernel function: gwr.bisquare
Fixed bandwidth: 11.04651
Summary of GWR coefficient estimates:

Min. 1st Qu. Median 3rd Qu. Max. Global
X.Intercept. 27.04000 63.63000 69.37000 71.06000 77.33000 68.6190
INC -2.57400 -2.03700 -1.65300 -0.66770 -0.26290 -1.5973
HOVAL -0.73720 -0.43290 -0.08757 -0.04483 0.26540 -0.2739

As before, the individual parameter estimates can be extracted from the
gwr object, plotted or mapped.

9.5 Practice

To practice, plot or map the coefficient vector for the other coefficients in
the model. Alternatively, check for continuous spatial heterogeneity in the
BOSTON or BALTIMORE data sets. Compare the insights provided by the
expansion method to those from GWR, and carry out sensitivity analysis
for the choice of bandwidth and kernel function.
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Appendix

Summary of Data and Spatial Weights Operations

• Data import and setup

– library(spdep): load the spdep package library

– source("read.geoda.R"): load and compile the source file read.geoda.R

– read.geoda: read a data set exported from GeoDa

– data(dataset): load an R data set

– attach(dataset): attach the data frame, making the variables
available by name

– summary(dataset): summary descriptive statistics of all vari-
ables in the data set

• Types of spatial weights objects

– nb: neighbor list, contiguities only

– listw: neighbor list with weights, sparse format

– knn: k-nearest neighbor object

– matrix: standard matrix object

• Reading spatial weights files into neighbor lists

– read.gal: read GAL format weights files

– read.gwt2nb: read GWT format weights files

• Creating spatial weights objects

– cell2nb(nrow,ncol): neighbor list for rectangular regular grid
cells
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– dnearneigh(coordinatematrix,lowdist,updist): create dis-
tance band weights using the lowdist and updist limits

– knearneigh(coordinatematrix,k): create a matrix with the in-
dices of the k-nearest neighbors

– nblag(nb,maxlag): higher order neighbors

– poly2nb(polygonlist): neighbor object from polygon boundary
file

– tri2nb(coordinatematrix): create neighbor list using Thiessen
polygon neighbor structure

• Conversion between weights objects

– knn2nb(knn): create a neighbor list object from a knn object (a
matrix)

– nb2listw(nb): create a listw weights object from a neighbor
list

– mat2listw(matrix): convert a spatial weights n by n matrix to
a listw object

– nb2mat(nb): convert a neighbor list to a matrix

– make.sym.nb(nb): force a possibly asymmetric neighbor list (e.g.,
from k-nearest neighbors) to a symmetric form

• Characteristics of spatial weights

– summary(nb): connectivity summary of neighbor list

– card(nb): number of neighbors for each observation

– is.symmetric.nb(nb): check on symmerty of connectivity struc-
ture

• Spatial transformations

– lag.listw(listw,variables): create spatially lagged variables
using a listw object

– invIrM(listw,rho): create inverse matrix (I − ρW )−1
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