
SOME NOTES ON PARAMETRIC SIGNIFICANCE TESTS FOR
GEOGRAPHICALLY WEIGHTED REGRESSION

Chris Brunsdon
Department of Town and Country Planning, University of Newcastle Upon Tyne,
Newcastle Upon Tyne, NE1 7RU, U.K. E-mail: chris.brunsdon@ncl.ac.uk

A. Stewart Fotheringham and Martin Charlton
Department of Geography, University of Newcastle Upon Tyne, Newcastle Upon Tyne,
NE1 7RU, U.K. E-mail: stewart.fotheringham@ncl.ac.uk and martin.charlton@ncl.ac.uk

ABSTRACT. The technique of geographically weighted regression (GWR) is used to
model spatial ‘drift’ in linear model coefficients. In this paper we extend the ideas of GWR
in a number of ways. First, we introduce a set of analytically derived significance tests
allowing a null hypothesis of no spatial parameter drift to be investigated. Second, we
discuss ‘mixed’ GWR models where some parameters are fixed globally but others vary
geographically. Again, models of this type may be assessed using significance tests.Finally,
we consider a means of deciding the degree of parameter smoothing used in GWR based
on the Mallows Cp statistic. To complete the paper, we analyze an example data set based
on house prices in Kent in the U.K. using the techniques introduced.

1. INTRODUCTION AND BACKGROUND

It has long been recognized that there are inherent difficulties in analyzing
spatial data (Cressie, 1991; Haining, 1990; Griffith, 1988; Upton and Fingleton,
1985; Cliff and Ord, 1981). One of these, which we address directly in this paper,
is spatial nonstationarity: the variation in relationships and processes over
space (Bailey and Gatrell, 1995). Another is that of spatial dependency, which
has been examined, primarily within a regression framework (Cliff and Ord,
1981; Odland, 1988; Anselin, 1993). One of the major effects of spatial depend-
ency that has been discussed in some detail is that on the estimates of the
standard errors of regression parameter estimates when the error terms in the
model exhibit spatial autocorrelation. Anselin (1993) has developed spatial
regression models that can ameliorate this problem. The problems of spatial
nonstationarity and spatial dependency are obviously related. If spatially vary-
ing relationships are modeled within a global framework such as standard
regression then the error terms in the global regression model will exhibit
spatial autocorrelation. To demonstrate this, imagine a region in which y is
regressed on x and that the resulting global model is
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(1) yi = 1.5 + 2xi

However, suppose that in one part of the region this relationship is actually

(2) yi = 1.5 + 2.5xi

and in another part of the region the actual relationship is

(3) yi = 1.5 + 1.5xi

Then applying Equation (1) to that part of the region in which Equation (2) holds
will lead to underestimates of the yi values in that region and positive residuals,
assuming xi is positive. Conversely, applying Equation (1) to that part of the
region in which Equation (3) holds, will lead to overestimates of the yi values
and negative residuals. Hence, there will be a strong positive autocorrelation of
the error terms resulting from the inability of the global model to deal with the
spatial nonstationarity of the relationships being measured. The established
method of dealing with this problem is to calibrate a spatial regression model
that allows for spatial autocorrelation of the error terms (Anselin, 1993; Griffith,
1988; Cliff and Ord, 1981; Cressie, 1991) although there are problems in the
implementation of such a model because of the need to  assume a  global
autocorrelation function for the error terms and the need to determine a suitable
weights matrix for the autocorrelation function.

An alternative, and more direct approach to the problem, is Geographically
Weighted Regression (GWR). In GWR any spatial nonstationarity in the rela-
tionships being measured is accounted for by allowing the calibrated model to
vary spatially (Brunsdon, Fotheringham, and Charlton, 1996). In this sense, the
difference between GWR and the spatial error approach is that in the former,
spatial drift from ‘average’ global relationships is measured directly, whereas in
the latter it is measured as a second-order effect through the spatial distribution
of residuals. We see merit in the GWR approach which also produces maps of
parameter variations over space and can be used to improve our understanding
of the processes being modeled, and thus separate local spatial anomalies in
terms of each explanatory variable.

There are several reasons why spatial variations in relationships may occur.
For example, in a regression model used to predict the price of houses it is
possible that the value of an extra bedroom may vary from place to place—in
areas close to good schools there may be more demand for houses by families
with several children, so that the utility of an extra bedroom is high. Similarly,
in cities where the housing stock is very old there may be few houses with garage
facilities, so the added value of a garage may be greater than usual. This
phenomenon can occur in many other fields of study—for example in modeling
the spatial distribution of certain types of illness as a function of social and
economic conditions (Fotheringham, Brunsdon, and Charlton, 1996), or model-
ing crime rates, voting behavior, and out-migration rates over space in terms of
a casewise vector of explanatory variables. Indeed, in any analysis of spatial
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data GWR may be used as a diagnostic for a global modeling approach to examine
for the presence of spatial nonstationarity in relationships.

At this stage it is perhaps helpful to consider the mathematical expression
of the GWR model. If an ordinary least squares (OLS) regression model takes
the form

(4)

then the model for GWR is

(5)

where (ui, vi) is the location in geographical space of the ith observation. Note
that in the case where the function aj(ui, vi) is a constant for all (ui, vj), then the
OLS model of Equation (4) holds. The method proposed to calibrate Equation (5)
in GWR is basically a moving kernel window approach. To estimate aj(.,.) at the
location of the ith observation one carries out a weighted regression where each
observation is given a weight wki, if the observations are indexed by the variable
k. Note that wki should be a monotone decreasing function of dki, the Euclidean
distance between the points (ui, vi) and (uk, vk). For examples of applications of
the technique, see (Fotheringham, Charlton, and Brunsdon, 1997; Brunsdon,
Fotheringham, and Charlton, 1996; Fotheringham, Charlton, and Brunsdon,
1998).

Note that this approach may be generalized. An estimate of aj(.,.) can be
obtained at any point (u, v) in this way—not just at the locations of the sample
observations. This is particularly useful in, say, depicting aj(u, v) as a surface or
a set of contour lines superimposed over the study area. There are several
linkages between this approach and the idea of kernel probability density
estimation (Silverman, 1986; Brunsdon, 1995), and that of kernel regression
(Wand and Jones, 1995). Furthermore, as the sample size tends to infinity GWR
can provide a consistent and unbiased estimator of aj(u, v) provided a suitable
rule for choosing bandwidth as n increases is given (Stone,1977;Wand and Jones,
1995).

An important geographical note is struck here—this technique provides a
means of computing localized regression estimates. If the weighting function is
a monotone decreasing function of distance then observations further from the
point at which the model is calibrated weight less than observations closer to
that point. Thus, GWR provides a localized set of parameters at this position in
space. This may be advantageous in a geographical context. For example, if at
some point the housing markets in two places are behaving very differently it
is not helpful to calibrate models in either of these places using data from the
other.

It should be noted that techniques already exist that can provide local
estimates of regression parameters. Perhaps the best known of these is the

y x ai ij j i
j

= +∑ ε

y x a u vi ij j i i
j

i= +∑ ,b g ε
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expansion method (Jones and Casetti, 1992; Casetti, 1972). In this framework,
parameters of a global model are expanded in terms of other attributes that can
include location so that parameter drift across space can be measured (Eldridge
and Jones, 1991). However, as Fotheringham, Charlton, and Brunsdon (1998)
show in some detail, the expansion method essentially calibrates prespecified
parametric forms for trends in relationships over space rather than directly
calibrating relationships as GWR does. Consequently, the expansion method
may miss important spatial variations in relationships and produces relatively
simplistic descriptions of any spatial nonstationarity.

However, like all models, GWR should be capable of being tested. In cases
where a simple OLS model holds, the extra complexity of varying geographical
coefficients is an unwelcome intrusion. It is therefore important to develop a set
of statistical tests to see whether the results of fitting a GWR model are due to
a genuine spatial drift in parameters, or whether the variations are simply
caused by random fluctuations in the ε term in the model. Clearly the GWR
approach will always give a better fit in terms of sums of squared residuals
(RSS): the greater flexibility of the regression coefficients over space allows this
to happen. However, as with any regression model it must be tested whether
this inevitable reduction is statistically significant. The development of such
tests will be the core of this paper. The most basic test (discussed in the next
section)  attempts to answer the question: Is the performance  of the GWR
significantly better than that of ordinary regression? In later sections we will
consider more sophisticated tests relating to individual variables and the form
of the kernel weighting function.

2. A BASIC TEST OF THE GWR MODEL

One of the main products of GWR is a set of local parameter estimates that
can be mapped and which describe the degree of spatial nonstationarity in a
relationship. An obvious question to ask is then: Does significant spatial
nonstationarity exist? Obviously spatial variations in parameter estimates will
exist due to sampling error; we need to evaluate the degree to which variations
exist and ask what is the probability the observed variations can be ascribed
purely to sampling.

In an earlier paper, the degree of spatial nonstationarity was assessed
visually and also by constructing experimental distributions based on Monte
Carlo procedures (Fotheringham, Charlton, and Brunsdon, 1998). In the latter,
the variance of the local parameter estimates was calculated and the data
reorganized randomly across the spatial units. Rerunning GWR on this random-
ized data produced a new set of local parameter estimates which again generated
a variance. Repeating this procedure yielded 99 experimental variances against
which to compare the variance from the observed data set. However, this
technique is computationally demanding because of the need to rerun the GWR
procedure for each randomized data set, and therefore it is the task of the
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remainder of this paper to develop a theoretical significance testing procedure
for GWR.

We need a test of the null hypothesis that the functions ai(u, v) are constant
for all points (u, v) in the study area. If there is no evidence to reject this
hypothesis, it suggests that an ordinary, global regression model is an adequate
descriptor of the data. In more formal terms, the hypothesis is set out as

H0 : ∀j

against

H1 : ∀j

or more specifically, H0 will be compared against a subset of H1 corresponding
to a GWR-type estimation of the aj(ui, vi)s.

Before proceeding, it is worth establishing some vector/matrix notatation.
Let the matrix X have elements xij representing observation i on variable j and
y be a vector with elements yi representing observation i. These are the standard
array form of the data used in many regression models. In the GWR model,
the coefficients aj(u, v) vary across geographic space. Borrowing from the
usual OLS notation, these can be gathered into a vector a(u, v), so that a(.,.) is
a vector function mapping 2, a two-dimensional Euclidean plane, onto m, an
m-dimensional Euclidean hyperplane. Under OLS, the maximum likelihood
estimate of a(u, v) is given by

â(u, v) = (XTX)–1XTy

where the hat denotes that â(u, v) is an estimate. Note that although here the
estimate is shown as a function of (u, v), in OLS it is in fact assumed constant
with respect to them. To obtain an estimate of y one has to premultiply by X

= X(XTX)–1XTy

or, more simply

= Soy

where

So = X(XTX)–1XT

So is a smoothing operator that takes the observed y and ‘smoothes’ it to , the
fitted value after the random residuals have been removed. It is also sometimes
referred to as the hat matrix or hat operator because it transforms y into . Note
that So does not depend on y.

Now consider GWR. In this case, a weighted OLS is used to estimate a(u, v),
but the weighting changes as (u, v) varies. Suppose W (u, v) represents a diagonal
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ŷ

ŷ
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matrix whose diagonal elements correspond to the weighting scheme for a
particular (u, v). Then

â(u, v) = [XTW(u, v)X]–1XTW(u, v)y

We can see that a hat matrix exists for GWR by considering the expression for
from the calibrated GWR model. At any given yi this requires Xi, the ith row

of X, and â(ui, vi). Then we have

yi = Xi(XTW(u, v)X)–1XTW(u, v)y

Note that Xi(XTW(u, v)X)–1XTW(u, v) is a row vector, say ri. Then if S1 is
constructed so that its ith row is ri, we have

= S1y

So GWR also has a hat matrix, S1. As before, this does not depend on y. In either
of these models, the residuals may be expressed as

= (I – Sz)y

where z is either 0 or 1. Thus, the sum of squared residuals can be expressed as

(6)

where

Rz = (I – Sz)T (I – Sz)

Thus, for both OLS and GWR the sum of squared residuals are quadratic forms
in y. If it is assumed that the εis have independent and identical Normal
distributions, then Equation (6) is a quadratic form of Normal variates.

A result from Kendall and Stuart (1977) concerning the test of a null model
against an alternative becomes useful here. This basically states that if both
models are expressed in hat matrix form, for Normally distributed y, then the
expression

(7)

where v = Tr(R0 – R1) and δ = Tr(R1) has an approximate F-distribution with
degrees of freedom given by (v2/v', δ2/δ'), where v' = Tr [(Ro – R1)2], δ' = Tr (R1

2),
and v2 and δ2 are the respective squares of v and δ.

This approximation is based on the fact that both the numerator and
denominator above are quadratic forms of Normal variates, and these are well
approximated by χ2 distributions with the degrees of freedom chosen so that
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their first and second moments agree with those of the quadratic forms. Note
that  these degrees of freedom are not neccessarily integers, but  that the
F-distribution is well-defined for any positive degree of freedom parameters. In
future analyses these two quantities will be referred to as the effective degrees
of freedom in the model. Since GWR and OLS both have hat matrices, it is
possible to compare these two models using the above statistic. In fact, this
procedure is identical to the more usual procedure for comparing two OLS
models, when one has included more explanatory variables than the other. It
can be shown that in this case the degrees of freedom are always integers and
the F-distribution assumption is exact. This suggests that GWR–OLS compari-
sons may be expressed in the form of an ANOVA table, with residual mean
squares for both GWR and OLS being compared.

3. AN EXAMPLE OF A ‘WHOLE MODEL’ TEST

As an example of the testing procedure outlined in the last section, consider
the following data set. These data relate to house sales whose mortgages were
arranged by the Nationwide Anglia Building Society in 1991. Geographically,
these data are based on cases centered around Deal, in Kent, U.K. (see Figure 1).
There are 82 cases in the study. For each mortgage arranged, details of the house
itself, its agreed selling price, and its postcode are recorded. In this case the
purpose of regression modeling is to attempt to predict selling price from other
attributes of the house. This example is being used to demonstrate the use of
the statistic introduced above, rather than to study house price in any detail so
a relatively simple bivariate model will be used—attempting to predict house
selling price (in thousands of pounds) as a function of floor area (in square
meters). Typically, one would expect larger houses to sell at higher prices. Of
course, far more detailed models could be used—there are several other features
of houses recorded, such as number of bedrooms, number of bathrooms, and so
on. However, because these factors correlate strongly with floor area it was felt
that for this illustrative example it was sufficient to investigate this as a broad
effect. A more detailed analysis of hedonic price models is currently the subject
of work in progress by the authors.

If we refer to the dependent and independent variables as HOUSE PRICE
and FLOOR AREA then a possible OLS regression model might be

(8) (HOUSE PRICE) = a0 + a1 (FLOOR AREA)

Anybody who has attempted to buy housing in the UK (and quite probably
anywhere else) will immediately identify one problem with Equation (8): the
effect of geographical location is not allowed for. As well as size, one unique
aspect of any house is its geographical location. Social conditions in an area, and
its closeness to certain facilities have a strong influence on property values. The
area of Kent being studied—around Deal—lies near to the U.K. coastline and
has a castle, a golf course, two coastal launching sites, a railway station, and a
major road passing through. Factors such as closeness to any of these features

© Blackwell Publishers 1999.

BRUNSDON ET AL.: GEOGRAPHICALLY WEIGHTED REGRESSION 503



may affect the demand for housing, and hence house prices. Although the study
area itself spans only a few kilometers, it is likely that even over this space there
will be geographical factors affecting house prices. Although price will vary with
size in the same area, it is likely that the exact nature of the relationship will
vary between areas. For this reason, a GWR model of house price is also proposed

(9) HOUSE PRICE = a0(u, v) + a1(u, v) FLOOR AREA

where, as before, (u, v) represents a spatial location.

FIGURE 1: Locations of Samples.
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First, consider the geographic spread of the sample. In Figure 1 a map of
the cases is provided, showing the coastline, major places, and the values of
houses themselves. The castle is located towards Walmer, the railway station
further north, near Sholden. The general shape of the residential region is
indicated by the distribution of the sample points.

A scatter plot of the variables FLOOR AREA (in square meters) and HOUSE
PRICE (in thousands of pounds) is shown in Figure 2. From this, it can be seen
that there is a roughly linear relation between the two. Fitting an OLS model
gives the results in Table 1.

Figure 3 shows a scatter plot of absolute residual values. At first glance this
might be thought to indicate heteroskedasdicity in the residuals—however, one
must be wary of such interpretations—see, for example, Cleveland (1979). Due
to changes in the density of the x variable, the expected y range in any vertical
section of the plot will vary—the denser the x variate the greater the range.
Cleveland (1979) suggests compensating for this by adding a Loess fit of absolute
values  of residuals against FLOOR AREA to a plot of absolute values of
residuals. This will measure mean absolute residuals for fixed size subsamples
because a Loess plot is a moving window regression technique based on quantiles
of the data set. This line has been added to Figure 3 and suggests a lack of strong
trends in the size of residuals as a function of FLOOR AREA.

The above suggests that the pattern of the residual plot is not a problem,
but it may be that the size of the residuals is a problem. The mean absolute error
is about £11,000 whereas the average price is around £55,000; in practical terms
this is an uncomfortably large margin of error. A more enlightening examination
of the residuals is achieved using linked plots of the form advocated by Haslett,

FIGURE 2: House Price Versus Floor Area.
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Wills, and Unwin (1990) and Brunsdon (1995). Here two interactive plots, one
of geographical location and the other of residuals, can be ‘brushed’ with the
cursor in a window-based computer environment to see which geographical
location corresponds to which residual. Using this approach one effect that
became clear was that positive and negative residuals exhibited strong spatial
clustering. There were distinct clusters of over- and under-prediction.

This pattern is quite different from the purely random pattern one might
expect under the assumptions of residual behavior made in an OLS model. The
evidence suggests that adopting the GWR approach could improve the predictive
performance of the model. Such a model was fitted to the data with a Gaussian
kernel of the form

(10) K(d) = exp(–d2/k2)

Here, the kernel bandwidth k is equal to 400 meters.
Inspecting the output of GWR in the form of shaded pixel maps (Figures 4

and 5), one can see higher values in the intercept and slope values in the south,
towards Walmer. Interestingly, Walmer is the site of a historic monument and
proximity to this appears to have a positive effect on house price. Note also that
the intercept and slope values increase near to the two railway stations. This
suggests that closeness to the railway station adds a premium to house price
and also that the increase occurs in proportion to the size of the house. This could
also be interpreted as demonstrating the exploratory nature of the technique.
By combining geographical information to the GWR result the linkages to
railway stations becomes apparent. This was achieved without explicitly speci-
fying a variable such as distance to railway station, or a speculative parametric
form for a distance-decay effect.

In Figure 6, a Loess fit is used to explore possible heteroskedasticity in the
error term in the same manner as in Figure 3. Because there does seem to be
some trend in the Loess curve, this is further investigated by producing 1 percent
pointwise confidence intervals around the curve using Monte-Carlo simulation
(Hastie and Tibshirani, 1990, p. 60–64). Here, the confidence bands are based
on a null hypothesis of a constant level of error variance with floor area, and are
simulated using random permutations of the absolute residuals against the
FLOOR AREA values. It can be seen in Figure 6 that the Loess curve remains
within the confidence bands and therefore it seems reasonable to work with the
assumption of a fixed variance error term.

TABLE 1: Results of Ordinary Least Squares Fit of HOUSE PRICE
on FLOOR AREA

Variable âi Standard Error (âi)

FLOOR AREA 0.496 0.059
Intercept 8.655 5.096
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This analysis may be formalized by carrying out an ANOVA test as proposed
in the previous section. This will compare the fit of the OLS model to that of
GWR. The results of this test are shown in Table 2. In this table, the first column
shows the residual sum of squares of the OLS residuals (first row), the RSS for
the GWR residuals (bottom row) and the difference between these two (middle
row).The second column gives the respective degrees of freedom for each of these.
The middle and bottom rows give v and δ in Equation (7) respectively, while the
top row shows two degrees of freedom for the linear model. The third column
MS, Mean Square, gives the results of dividing the sums of squares by their
respective degrees of freedom—the numerator and denominator in Equation (7).
Finally, dividing the former by the latter gives the psuedo-F statistic, and the
p-value may then be computed as set out earlier.

Note the reduction in residual sum of squares when the GWR approach is
used. The results of this ANOVA suggest that the null hypothesis OLS model
should be rejected in favor of GWR. Note that the degrees of freedom are
noninteger, and also that the degrees of freedom for the improvement in residual
sum of squares is not equal to the difference of the GWR residuals and the OLS
residuals. These figures are obtained from Equation 7.Clearly, this suggests that
there is a significant improvement in the model fit when GWR is adopted.

4. A MORE FLEXIBLE APPROACH TO GWR

The result of the previous section suggests that, for the example data set, a
model specification in which all of the terms are allowed to vary globally

FIGURE 3: Residual Plot for OLS Model.
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FIGURE 4: Linked Plots Showing Relationship
Between Residuals and Geographical Location.

Large points are those selected by “Brushing.”
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performs better than one in which they are fixed globally. That is, the effect of
allowing two parameters to vary spatially was compared to the effect of allowing
none  to vary. However, a reasonable  strategy may be to allow one of the
parameters to vary over space while the other is held fixed. This may be an
appropriate model in situations where certain factors influencing the dependent
variable are global in nature, while others are local. For example, suppose there
was a tax incentive for purchasing new housing stock, and this incentive was
fixed on a national basis. In this case, provided the study area was entirely
contained in the country where this took place, the effect on house price of a ‘new
house’ dummy variable might be constant throughout the study area. However,
the influence of other variables could vary geographically. In certain situations,
it may be obvious which effects are geographically constant and which will vary,
but this is not always so. For example, in the GWR analysis in the previous
section it is not clear whether the noted improvement in model fit was due to
the variability of the slope term, or the intercept term, or both. Each possible
outcome has a different interpretation. If the FLOOR AREA term is fixed but
the intercept varies then this implies that the marginal cost per unit area of
property is global, but there is a size-independent premium for living in certain
areas. However, if the FLOOR AREA term also varies, this suggests that
difference in price between large and small houses also varies geographically.
In its initial form, as documented in Brunsdon, Fotheringham, and Charlton
(1996), GWR cannot help to answer this question. The approach set out is an
all-or-nothing procedure in which spatial variation must be estimated for every
parameter. In this section a new development in GWR that addresses this
problem is introduced.

If it is desired to allow some parameters to vary over space, but others to
be fixed, then a new model, which is a hybrid of Equations (4) and (5) should be
specified as

(11)

Here, the first k coefficients are fixed and the remainder vary. Returning to
the matrix notation, the independent variable matrix X may be partitioned
vertically after column k into the two matrices Xc and Xv, representing the
variables associated with constant and varying coefficients,respectively.Usually
one of these will have a column of ones, giving an intercept term. Which one has
this property will depend on whether the intercept term is to be fixed over space.

y x a x a u vi ij j
j k

ij j i i
j k m

i= + +
= = +
∑ ∑

1 1, ,

,b g ε

TABLE 2: ANOVA comparing GWR to OLS

Source of Variation SS DF MS F p-value

OLS Residuals 22152. 2.00
GWR Improvement 18257. 47.42 385.0
GWR Residuals 3895. 32.58 119.5 3.22 0.00
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To calibrate this model, the back-fitting approach of Hastie and Tibshirani (1986)
may be used. In this method, suppose we are fitting a model of the form

y = fc(Xc) + fv(Xv) + ε

and suppose we have an initial guess for fc(Xc), say (Xc). Then, if we have a
method for calibrating a model of the form

(12) y = fv(Xv) + ε

we can use this to obtain an estimate of fv(Xv), say (Xv) by calibrating the
model

y – (Xc) = fv(Xv) + ε

In a similar manner, if we have a method for calibrating

(13) y = fc(Xc) + ε

an estimate of (Xc) can be obtained. Each two-stage iteration of this sort
gives new calibrations of the two nonrandom terms making up the model, say

(Xv) and (Xc) for the ith iteration, and eventually these should converge.
Fortunately,previous sections have shown that if fc(Xc) is an OLS regression

model and fv(Xv) is a GWR regression model, then we do have ways of calibrating
both of these, and so we may carry out the back-fitting procedure. In fact, the
methods for estimating the functional values in Equations (12) and (13) are just
premultiplication of the y vectors by the appropriate hat matrices. If we call the
hat matrix for the OLS part of the model Sc and that for the GWR part Sv and
then define

(14) = Scy

(15) = Svy

so that we have

(16)

then the procedure for calibrating Equation (11) is as follows

Step 1. Supply an initial guess for , say . In practice, good results have
been achieved by regressing Xc on y using OLS. This is achieved by
setting to Scy.

Step 2. Set i equal to 1.

Step 3. Set to Sv[y – ].

$ ( )fc
0

$ ( )fv
1

$ ( )fc
0

$ ( )fc
1

$ ( )fv
i $ ( )fc

i

$yc

$yv

$ $ $y y yc v= +

$yc $ ( )yc
0

$ ( )yc
0

$ ( )yv
i $ ( )yc

i−1
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Step 4. Set to Sc[y – ].

Step 5. Set i equal to i + 1.

Step 6. Loop back to Step  3 unless is sufficiently  close  to

to suggest convergence.

Provided some regularity conditions apply to both hat matrices we can be
sure of convergence (Hastie and Tibshirani, 1990 pp. 108–110). Whether the
value to which the s converge is a consistent estimate of is not currently
known. However, for a nongeographical form of a model similar to this (a
generalized additive model with some linear terms) consistency has been shown
(Hastie and Tibshirani, 1990 p. 118). Clearly, some future theoretical work in
this area would be valuable.

As an example, consider again the data set from the previous section. A
model of the form

(17) HOUSE PRICE = a0(u, v) + a1 FLOOR AREA

is now proposed. This can be thought of as a house price consisting of an ‘area
effect’ together with a linear ‘size effect.’ It is hoped that the spatially varying
intercept term will reflect characteristics of the location of the house, such as
nearness to facilities and socioeconomic characteristics of the area. However,
unlike model (9), this assumes no interaction between the location of the house
and the cost per square meter in the size component of the price.That is,although
this model assumes that house price does alter geographically, the incremental
cost of an extra square meter of floor space is global. Another viewpoint is that
in estimating a0(u, v) here, one is attempting to construct a house-price surface
after controlling for variations in the size of the housing stock.

The algorithm outlined above was used to calibrate this model. Conver-
gence, although not rapid in this example, occured after about 80 iterations. In
practical terms, this takes about 3 minutes on a Power Macintosh 7200/75, and
about 1.5 minutes on a Macintosh Powerbook 1400/133, using the XLISP-STAT
package (Tierney, 1990).

The intercept surface is shown as a contour map in Figure 7, and a residual
plot for the mixed model is shown in Figure 8. The patterns in Figure 7 are
similar to those followed by both the intercept and the slope in the full GWR
model, favoring house prices around Walmer.

5. SIGNIFICANCE TESTING FOR MIXED GWR MODELS

The example in the last section could be made more useful if some form of
significance testing could be applied to mixed models of the general form of
Equation (11). If this were the case, one could test whether allowing just the
intercept term in the house-price model to vary was a significant improvement
on OLS, and whether moving from the mixed model to full GWR was also a
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significant model improvement. In order to derive a test of this sort, note that

in the mixed GWR algorithm, both and can be expressed as the result
of repeated matrix premultiplications applied to y. Thus, we may write

noting that neither depend on y. Eventually, when the algorithm
converges, we have

= Lcy

= Lvy

= Lcy + Lvy

= (Lc + Lv)y

= Ly

so that the mixed model estimator also has a hat matrix expression. Thus, once
again  the  Kendall and Stuart technique may be applied  in ANOVA tests
comparing mixed models with full GWR models and OLS models.Computation-
ally, the appropriate hat matrix may be obtained by mirroring the operations
successively applied to in the previous section, but with an n-by-n identity
matrix as the initial post-multiplicand.
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FIGURE 7: House Price Residuals (GWR Model).
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This method may be applied to the model used in the previous section, to
test the full GWR model against a null hypothesis of Equation (17). The result,
again in ANOVA format, is shown in Table 3. From this it may be seen that there
is strong evidence that both the intercept and the slope vary. This may be
interpreted by saying that the geographical effect does interact with the size of
property, so that the cost per square meter of a house alters from place to place,
as well as there being a premium added to the cost of a house which is
independent of house size.

6. FURTHER TOPICS

Having introduced a significance testing method for GWR models, and
considered ways in which the GWR model might be usefully extended, we use
this closing section to explore some further issues and consider some new
problems that may emerge.

Choosing Variables and Model Specification

The first problem here is almost as old as multiple regression itself: How
does one choose which variables belong in a regression model? However, GWR
adds a new twist to this—as well as deciding which variables should be added
to a model, one must also decide whether these variables should be allowed to
vary spatially. As with ordinary regression, these choices are rarely straightfor-
ward. Often, the order in which variables are added to regression models
determines whether they are statistically significant or not. This problem can
be particularly prominent when variables are strongly correlated. There is no
guarantee that similar problems will not occur when sequentially replacing
global regression terms of the form ai with geographically specific ai(u, v) terms.
The order in which replacements occur may affect the ANOVA tests outlined in
this paper.

There is perhaps no clear-cut solution to this problem—unless there is some
order of inserting regression terms (or allowing their spatial variability) in a
sequence that is meaningful to some specific problem. For example, in a more
comprehensive analysis of house prices it may be reasonable to allow the
intercept term to vary first in an attempt to discover if there are any unobserved
geographical variables influencing price. In this case the null hypothesis would
take the form H0: all terms non-geographical against H1: only the intercept
varies geographically. If the latter were true, this may suggest an external
variable was having some effect.

TABLE 3: ANOVA comparing full GWR to mixed GWR

Source of Variation SS DF MS F p-value

Mixed GWR Residuals 7848.5 36.8
Full GWR Improvement 3953.8 12.64 312.8
GWR Residuals 3894.6 32.58 119.5 2.61 0.01
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A related, and important, issue is how reliant one should be on whether
spatial variation is significant. The situation is best summarized by Chatfield
(1994)

. A significant effect is not the same thing as an interesting effect

. A nonsignificant effect is not necessarily the same as no difference

The nightmare scenario might be a variant on stepwise regression, where
as well as automatically inserting and deleting variables from a model, terms
are allowed to vary spatially or globally constrained according to some ad hoc
set of rules. Typically the final outcome of such a procedure depends on a set
of parameters  determining  the  behavior of  the  stepwise  algorithm. In
practice such parameters are frequently chosen arbitarily—perhaps as a set
of default values on a computer software package—and the analyst is left with
the task of constructing an interpretation from the output of this complex and
ill-understood process. It is the view of the authors that good human knowledge
of the subject matter underlying the statistical procedures is more likely to
produce meaningful analyses than a black-box approach such as stepwise
regression.

Choosing a Bandwidth

Another issue in GWR is the choice of bandwidth. The bandwidth in GWR
determines the rate at which the regression weights decay around a given
point (u, v). If the bandwidth is small, weights decay quickly with distance
and the values of the regression coefficients change rapidly over space. Larger
bandwidths produce smoother results. It is important to choose a suitable
bandwidth to obtain reliable estimates of the spatial variation in the coefficients.
To do this, one needs to discuss some properties of the estimator of y, say . At
any geographical location, if we are given a set of predictors, x, and a set of
coefficient estimators, â, then = xta is an estimate of y at that point. However,
â is an estimate of a based on a sample of spatially diffuse x and y observations.
Due to the randomness of the y term, â is random, and therefore so is . Two
important properties of the distribution of are its standard deviation and its
expected value, SD[ ] and E[ ]. When, for all x, E[y] = E[ ], the estimator is
said to be unbiased. In this case,SD[ ] is, in itself,a useful measure of the quality
of as an estimator of y. However, zero bias does not in itself guarantee an
optimal estimator.

Consider a pair of estimators for y. Call these and respectively.
Suppose E[ ] ≠ y and E[ ] = y, but SD[ ] < SD[ ]. Although is a biased
estimator, its overall variability is less than that of . Thus, the likelihood of
extreme values of potential errors in the prediction of y is less for —the only
advantage has to offer is that the error distribution is centered on zero. If one
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were to consider the distributions of the squared error, that for the first estimator
could have a much longer tail.

This is an example of bias-variance trade-off—an important issue that
occurs in many types of statistical modeling. It is certainly an issue in GWR. If
regression coefficients vary continuously over space, then using weighted least-
squares regression is unlikely to provide a completely unbiased estimate of
â(u, v) at a given point (u, v). For each observation, there will be a different value
of â, but the regression requires that this value is the same for all observations.
The best one can hope is that the values do not vary too much. This is best
achieved by only considering observations close to the (u, v) at which we wish to
estimate â(u, v). However, because this reduces the effective sample size for the
estimate the standard error of â(u, v) will increase. Thus, the question arises as
to how close to (u, v) should points be considered? Too close and the variance
becomes large, too far and the variance drops but bias increases. At one extreme,
if a global model is chosen, then â(u, v) is assumed constant for all (u, v). If there
is much variability in the true â(u, v) then clearly bias will cause problems. It
is consideration of this phenomena that should guide the choice of bandwidth.

One approach is based on an idea of Mallows (1973) who proposes a statistic
for ordinary linear regression defined by

where SS is the sum of squared residuals for a given model, p is the number of
parameters in the model, n is the number of cases and 2 is the mean squared
error estimate from a second regression model using extra variables. The idea
is that the second regression model may be over-parametrized but will provide
an unbiased (although perhaps inefficient) estimator of σ2. In this case, we have
E[ 2] = σ2, and if the first regression model is also unbiased then standard
regression theory (see for example,Dobson (1990) gives us that E[SS] = (n – p)σ2.
In this case E[cp] = p. On the other hand, if the first regression model is biased,
then E[SS] > (n – p)σ2 and so E[cp] > p. If cp greatly exceeds p for some regression
model, this suggests that the omission of some variables has caused bias. In this
way, the statistic can be used to select a subset of variables from a list of
candidates that still provide an unbiased model.

At first, this may seem irrelevent to the choice of bandwidth in a GWR
model. However, choice of bandwidth is strongly linked to reduction of bias in
models. A GWR with a small bandwidth will tend to give unbiased estimates
because it will ‘wrap’ itself around features in the data. However, it will also
provide estimates of y having very large standard errors because each locally
weighted regression will only make use of a small number of variables. Decreas-
ing bandwidth has a similar effect on the performance of GWR models as adding
variables does to OLS models. Something similar to cp would be useful here to
check whether increasing bandwidth would introduce bias into the model. This

c p np = + −SS
$σ2 2

$σ

$σ
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suggestion is not entirely novel; Cleveland (1979) suggests a similar approach
for choosing the level of smoothing in Loess regression.

In this case, 2 will be estimated from a GWR with a very small bandwidth
(as before, we require an estimate with little bias). Then, as a statistic we use

where Sk is the hat matrix for the GWR model under  examination, with
bandwidth k. If the bandwidth is providing a virtually unbiased estimate of y
then the expected value of Mk will be Tr( ). This value is very similar to p
in the original statistic. In fact, in the limiting case where k → ∞, we have
Tr( ) → p.

In fact, because Mk may be expressed as a linear function of the F-statistic
used earlier in the paper, confidence limits of Mk under the null hypothesis
that GWR with a bandwidth of k provides an unbiased estimator of y can be
computed, and used in diagnostic plots. To see this in practice, Mk is plotted
against-k in Figure 9. The vertical lines show the upper and lower 95 percentage
points of the distribution of Mk, with a central check to show the expected value.
The black dots are the observed values. When the dot falls below the check we
have that cp falls below E[cp] under a null hypothesis of no bias in the GWR
calibration. On the basis of these diagrams k was chosen to be 0.18 kilometers.
This may seem small,but it perhaps illustrates that house price demand exhibits
spatial fluctuations even between streets in the same neighborhood.

Even with this method bandwidth choice is still a matter of judgement,
essentially one requires a bandwidth giving an estimate of negligible bias, but
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FIGURE 9: Mallows Cp Plot for Kernel Bandwidth.

© Blackwell Publishers 1999.

BRUNSDON ET AL.: GEOGRAPHICALLY WEIGHTED REGRESSION 519



beyond this the choice of whether one wants a very small bandwidth or a larger
one with smaller confidence intervals around parameter estimates depends on
the situation to which GWR is applied. In cases where low standard error
estimates of coefficients in specific (u, v) locations are required, larger band-
widths may be best. However, in cases where the primary aim is cartographic
exploration smaller bandwidths may be preferable. In this situation the human
eye and brain are reasonable smoothers of ‘noisy’ map patterns, but are not able
to reconstruct genuine features of the data that have been filtered out by GWR
before the graphic has been produced.

Spatial Autocorrelation in the Error Term

Although we have considered the GWR model as an alternative to standard
spatial autocorrelation models for modeling spatial effects in data, the two
models are not mutually exclusive. For example, one could consider a generali-
zation of models (5) or (11) where the distribution of the error terms εi are no
longer independent, but exhibit spatial autocorrelation. This is an important
consideration because nonindependence of the residual terms may cause
problems in interpreting the Mallows’ Cp statistic proposed earlier and may
also lead to undersmoothing in the GWR estimates (the latter phenomenon
is discussed in general terms in Hastie and Tibshirani (1990) and Wand and
Jones (1995). Two issues should be addressed here: first, techniques for diagnos-
ing the presence of spatial autocorrelation in the residuals of models such as (5)
and (11), and second, the calibration of models in which there is spatial autocor-
relation.

The first issue may be addressed using either exploratory diagnostics or
formal tests. It is anticipated that formal tests may be developed along the lines
of those for identifying residual spatial autocorrelation in global regression
models (see, for example, Griffith, 1988). One exploratory approach is through
the ‘semivariogram plot’ often used in Kriging (Mallows, 1973). In Kriging, error
terms are assumed to be spatially autocorrelated with Cov[εi, εj] = C(ui – uj, vi –
vj), where (ui, vi) and (uj, vj) are the geographic coordinates locating observations
i and j, and C is a symmetric, nonnegative definite function. Furthermore, E(εi)
= E(εi) = 0. Thus, the autocorrelation is a stationary process depending only on
the relative positions of observations i and j. This situation is often further
simplified to the model Cov[εi, εj] = C(dij), with dij being the distance between
observation i and j. This effectively adds an assumption of directional invariance
to the correlation structure. Note that under this assumption

E [(εi – εj)2] = Var (εi – εj) = C(0) – C(dij) = γ(dij)

Thus, we have a function γ(.) linking the expected value of εi – εj to dij. The
task of the semivariogram plot is to identify γ(.) by graphing dij against E(εi – εj).
A more detailed discussion is given in Bailey and Gatrell (1995). Typically, this
is done by ‘binning’ the n(n – 1)/2 observation pairs into a number of dij (possibly
overlapping) range classes and plotting the central dij of each class against the

1
2
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mean value of (εi – εj)2 in that class, although a Loess regression of dij against
(εi – εj)2 for each of the observation pairs is another possibility. The case where
the mean value of (εi – εj)2 shows no trends suggests that there is no spatial
autocorrelation in the errors, as this corresponds to the case where E(εi – εj)2

does not depend on dij. In other words the diagnostic plot suggests that γ(dij) is
constant. Again, Bailey and Gatrell (1995) provide a more detailed discussion of
this.

To illustrate, the ‘binning’ approach was applied to residuals from the GWR
model fitted to the house-price data in Section 3. Distance classes of (0.15,0.25],
(0.25,0.35], . . . (0.95,1.05] were used as bins. Figure 10 shows a plot as described
above. A bar graph was used here because it gives a visual impression of the
binning process. In this case, there is no clear trend in the heights of the bars
as distance increases, suggesting that a constant function is a reasonable
estimate for γ(.), and therefore that the residuals from this house-price model
show negligible spatial autocorrelation.

The second issue to be considered is that of calibrating GWR models in the
case where autocorrelation is present. An initial problem arising here is that of
identifiability. As discussed in the introduction to this paper, nonstationarity in
regression coefficients, and correlation between nearby error terms both give
rise to similar phenomena—namely that of spatial clusters of residuals of the
same sign when ordinary least squares regression models are fitted. This makes
it extremely difficult to determine which of the two effects have caused the
observed spatial residual patterns. Indeed, there are situations where Kriging
estimates based on stationary models of spatial autocorrelation and nonpara-
metric surface models without autocorrelation using thin-plate splines lead to

FIGURE 10: Mixed Model Residuals.

© Blackwell Publishers 1999.

BRUNSDON ET AL.: GEOGRAPHICALLY WEIGHTED REGRESSION 521



the same set of fitted values (Wahba, 1990). In this situation there is complete
nonidentifiability between the two models. Despite these problems, Wang (1996)
demonstrates how smoothing spline models with correlated random errors may
be calibrated. This approach provides one future direction for research into
calibrating spatially autocorrelated GWR models.

Another approach is to consider relaxing the stationarity constraint on the
spatial autocorrelation and to use geographical weighting to calibrate not only
the regression coefficients but also the degree of spatial autocorrelation in the
error term. This extra flexibility would allow for situations in which the degree
of correlation in the error term varied from place to place.This has been explored
by Brunsdon, Fotheringham, and Charlton (1998).

A Vector of Bandwidths

In Section 4 we introduced the notion of mixed GWR and put forward ideas
about calibrating this model. One could argue that such mixed models are a
special case of a more general model in which the bandwidth for calibrating the
coefficient for each variable may be different. One allowable bandwidth value
could be infinity—this is equivalent to a globally constant coefficient. In terms
of calibration, techniques similar to that of back-fitting may be used. Note that
because each individual variable has an associated hat matrix, the back-fitting
approach yields a hat matrix for the entire model calibration. Again, a Mallows-
like statistic could be constructed, but in this case we replace a bandwidth of
scalar k is replaced by a vector k. This, of course, creates new problems. If the
dimension of k is large then graphical techniques such as that used in Figure 9
become difficult to impliment. One compromise may be to use some form of
sequential approach in which new variables are added one at a time, each time
choosing an appropriate bandwidth. However, the criticisms leveled earlier
against stepwise regression may also have some validity here. At some stage in
any GWR modeling process it must be considered whether using multiple
bandwidths would provide a helpful extension of the simpler approaches dis-
cussed earlier in the paper.

Adaptive Bandwidths

A final extension of the GWR method is to allow bandwidths to vary
geographically. For example, when considering models in human geography,
urban areas may well have more dense clusters of observed cases than rural
areas. In this case a similar number of observations for calibrating a GWR may
be obtained using a smaller bandwidth in the urban areas. An analogous
problem in kernel-based probability density estimation has been considered by
Silverman (1986) and Brunsdon (1995). In the GWR case, several methods of
developing ‘adaptive’ kernels are currently being investigated (Fotheringham,
Brunsdon,and Charlton,1998). In many cases,associated hat matrices also exist
and so many of the techniques outlined in this paper may again be useful.
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7. CONCLUSIONS

In this paper we consider a number of theoretical issues in GWR. An
important contribution to GWR is the introduction of analytical techniques to
test for spatial nonstationarity as an alternative to the Monte Carlo methods
put forward in Brunsdon, Fotheringham, and Charlton (1996). The advance here
is twofold: the F-statistic approach increases theoretical understanding of GWR
as well as finding a less computationally-intensive means of testing GWR-based
hypotheses. Another important advance is the development of mixed models—
allowing the investigation of partial nonstationarity in models. Uniting both of
these advances is the use of the hat matrix in exploring theoretical issues and
practical computations. Hat matrices play a key role in much ordinary linear
regression theory, in generalized linear models, and in generalized additive
models (see, for example,Hastie and Tibshirani,1990).These matrices give much
insight into all of these techniques, and the finding that hat matrices also play
a key role in GWR gives promise of further theoretical advances in this area in
the near future. With this increase in the theoretical understanding of GWR, it
is hoped that it may be applied in a number of areas and become a valuable
modeling tool in spatial data analysis.
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